Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 4. Кинетика. Теплота. Звук.docx
Скачиваний:
11
Добавлен:
12.11.2018
Размер:
1.57 Mб
Скачать

§ 2. Ряд Фурье

В предыдущей главе мы познакомились с другой точкой зрения на колеблющуюся систему. Мы видели, что в струне воз­никают различные собственные гармоники и что любое частное колебание, которое только возможно получить из начальных условий, можно рассматривать как составленную в надлежащей пропорции комбинацию нескольких одновременно осциллирую­щих собственных гармоник. Для струны мы нашли, что соб­ственные гармоники имеют частоты 0, 20, З0, .... Поэтому наиболее общее движение струны складывается из синусои­дальных колебаний основной частоты 0, затем второй гармо­ники 20, затем третьей гармоники З0 и т. д. Основная гармо­ника повторяется через каждый период T1=2/0, вторая гар­моника — через каждый период T2=2/20; она повторяется также и через каждый период Т1=2Т2, т. е. после двух своих периодов. Точно таким же образом через период Т1 повторяется и третья гармоника. В этом отрезке укладываются три ее перио­да. И снова мы понимаем, почему задетая струна через период t1 полностью повторяет форму своего движения. Так получает­ся музыкальный звук.

До сих пор мы говорили о движении струны. Однако звук, который представляет собой движение воздуха, вызванное дви­жением струны, тоже должен состоять из тех же гармоник, хотя здесь мы уже не можем говорить о собственных гармониках воздуха. К тому же относительная сила различных гармоник в воздухе может быть совсем другой, чем в струне, особенно если струна «связана» с воздухом посредством «звучащей дос­ки». Разные гармоники по-разному связаны с воздухом.

Если для музыкального тона функция f(t) представляет давление воздуха в зависимости от времени (скажем, такая, как на фиг. 50.1.б), то можно ожидать, что f(t) записывается в виде суммы некоторого числа простых гармонических функ­ций от времени (подобных cost) для каждой из различных гармонических частот. Если период колебаний равен Т, то основная угловая частота будет =2/Т, а следующие гармо­ники будут 2, З и т. д.

Здесь появляется небольшое усложнение. Мы не вправе ожидать, что для каждой частоты начальные фазы обязательно будут равны друг другу. Поэтому нужно пользоваться функ­циями типа cos(t+). Вместо этого, однако, проще исполь­зовать для каждой частоты как синус, так и косинус. Напом­ним, что

cost+)=coscost-sinsint, (50.1)

а поскольку  — постоянная, то любые синусоидальные коле­бания с частотой  могут быть записаны в виде суммы членов, в один из которых входит sint, а в другой — cost.

Итак, мы приходим к заключению, что любая периодиче­ская функция f(t) с периодом Т математически может быть за­писана в виде

где =2/T, a a и b — числовые постоянные, указывающие, с каким весом каждая компонента колебания входит в общее колебание f(t). Для большей общности мы добавили в нашу формулу член с нулевой частотой а0, хотя обычно для музы­кальных тонов он равен нулю. Это просто сдвиг средней вели­чины звукового давления (т. е. сдвиг «нулевого» уровня). С этим членом наша формула верна для любого случая. Уравне­ние (50.2) схематически показано на фиг. 50.2.

Фиг. 50.2. Любая периодическая функция f(t) равна сумме про­стых гармонических функций.

Амплитуды гармонических функций аn и bn выбираются по специально­му правилу. На рисунке они показаны только схематически без соблюдения масштаба. [Ряд (50.2) называется рядом Фурье для функций f(t).]

Мы сказали, что любую периодическую функцию можно написать в таком виде. Следует внести небольшую поправку и подчеркнуть, что в такой ряд можно разложить вообще любую звуковую волну или любую функцию, с которой мы сталки­ваемся в физике. Математики, конечно, могут придумать такую функцию, что ее нельзя будет составить из простых гармо­нических (например, функцию, которая «заворачивает» назад, так что для некоторых величин t она имеет два значения!). Однако здесь нам не стоит беспокоиться о таких функциях.