Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы неразрушающий контроль.doc
Скачиваний:
1057
Добавлен:
28.03.2016
Размер:
86.02 Кб
Скачать
  1. Интенсивность ультразвука. Затухание ультразвука.

При распространении ультразвуковая волна в направлении своего движения несет определенную энергию. Количество энергии, переносимое волной за единицу времени через единичную площадку перпендикулярную к направлению ее распространения, называют интенсивностью волны (I). Интенсивность волны I пропорциональна квадрату амплитуды колебаний частиц (IА2). На практике измеряют отношение амплитуд электрических сигналов преобразователей (будем обозначать буквами U1 и U2), которые в свою очередь пропорциональны амплитудам колебания частиц А1 и А2. Единицей измерения в этом случае является децибел. По мере распространения волны, даже в строго определенном направлении без какого-либо расхождения, интенсивность ее падает. Уменьшение интенсивности волны называется затуханием ультразвука. Затухание волны происходит по экспоненциальному закону. Затухание ультразвуковых колебаний обусловлено двумя физическими процессами: поглощением и рассеянием. Поэтому коэффициент затухания можно записать: = погл. + расс . При поглощении механическая энергия колебаний частиц переходит в тепловую. Это происходит за счет внутреннего трения и теплопроводности среды. Поглощение наиболее сильно проявляется в жидкостях, газах и стеклах. Коэффициент затухания для данного материала растет с увеличением частоты ультразвука и температуры. Объясняется это тем, что доля энергии, переходящая в тепло за счет сил внутреннего трения, одинакова в пределах одного цикла колебаний. Поскольку с повышением частоты УЗК увеличивается количество циклов колебаний в единицу времени, то это ведет к росту потерь на переход энергии УЗК в тепло. Рассеяние ультразвука может быть вызвано наличием в материале зерен различных компонентов (например, феррит, графит), различной ориентацией кристаллических зерен, а также наличием пор или инородных включений. Увеличение рассеяния УЗ происходит в сварных стыках, структура которых изменена нагревом. Это затрудняет их контроль зеркально-теневым методом

  1. Нормальное падение уз волн на границу раздела сред. Коэффициенты отражения и прозрачности.

При нормальном падении ультразвуковой волны на границу раздела двух сред часть энергии волны отражается от поверхности раздела, а другая часть проходит сквозь нее. Распределение энергии отраженной и прошедшей волн зависят от механических характеристик граничащих материалов: скоростей волны и плотностей сред. Интенсивность отраженной волны отр определяется коэффициентом отражения R=отр /пад,где пад интенсивность падающей волны. Коэффициент отражения зависит от характеристик сред R=(1С12С2 / 1С1+2С2)2. Аналогично, интенсивность прошедшей волны прош тоже является долей интенсивности падающей волны и величину этой доли можно определить с помощью коэффициента D коэффициента прозрачности (прохождения) D =прош /пад .При этом R+ D=1 или R+ D=100%. Как видно из формулы, чем больше разница между акустическими сопротивлениями сред, тем больше коэффициент отражения R и меньше, соответственно, коэффициент прозрачности D. Например, граница сталь-воздух имеет большую разницу удельных акустических сопротивлений (СТАЛИ = 45, ВОЗД = 0,00075) и, как следствие, коэффициент отражения R практически равен 1 (отражается 100% энергии волны), а коэффициент прозрачности соответственно будет равен нулю: D  0. Поэтому при падении ультразвуковой волны из стали или другого материала на границу с воздухом волна не сможет пройти сквозь нее, а будет полностью отражаться. Для прохождения ультразвуковых колебаний из пьезопреобразователя в контролируемое изделие и обратно необходимо между ними обязательно вводить жидкостную прослойку, которая вытесняет воздух и т. о. исчезает граница воздух-материал. С другой стороны, свойство ультразвуковых волн отражаться от границ сред с различными акустическими характеристиками используется для обнаружения дефектов типа нарушение сплошности: поры, трещины, заполненные газом (R = 1) или шлаковые и другие включения (0  R  1).