Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
НОВОЕ_Уч. пос.Оээ для заочнИЭУП -2013.doc
Скачиваний:
606
Добавлен:
26.03.2016
Размер:
2.25 Mб
Скачать

2.2. Законы Кирхгофа

Согласно первого закона Кирхгофа алгебраическая сумма токов в любом узле электрической цепи равна нулю

I = 0.

Поскольку речь идет об алгебраической сумме ∑I, необходимо учитывать знаки слагаемых токов. Входящие в узел токи принято считать положительными, выходящие – отрицательными. Для узла "а" (рис. 2.5) имеем

I1 + I2 - I3 = 0.

Согласно второго закона Кирхгофа алгебраическая сумма ЭДС в любом контуре цепи равна алгебраической сумме падений напряжений на элементах контура

E = ∑R·I.

Для составления уравнения по второму закону Кирхгофа произвольно выбирают направление обхода контура. Принято ЭДС, токи и напряжения считать положительными, если они совпадают по направлению с направлением обхода контура, а если не совпадают – отрицательными. При обходе контура E1, E2, R2, R1 электрической цепи (рис. 2.5) по часовой стрелке имеем

E1 - E2 = R1·I1 - R2 I2.

2.3. Преобразования в электрических цепях

При расчётах сложных электрических цепей применяют формулы последовательного (смотреть пункт 2.1), параллельного, смешанного соединения элементов, а также преобразования "треугольника" в "звезду" и обратно. Рассмотрим эти соотношения.

2.3.1. Параллельное соединение (рис. 2.6)

Рис. 2.6. – Параллельное соединение элементов

При таком соединении элементов общее сопротивление определяется выражением

При двух сопротивлениях, соединенных параллельно

Если R1 = R2 = … Rn, то

где п – число параллельно соединенных элементов.

2.3.2. Смешанное соединение (рис. 2.7)

Смешанным соединением называют сочетание последовательного и парал­лельного соединений резисторов.

При смешанном соединении элементов для эквивалентного преобразования пользуются методом последовательных эквивалентных преобразований, т.е. последовательно преобразуются участки цепи, имеющие простое (только последовательное, или только параллельное) соединение элементов.

Поясним это на конкретном примере расчета электрической цепи (рис.1.3).

Рис.1.3. Смешанное соединение элементов.

Рис. 2.7. – Смешанное соединение элементов

2.3.3. Преобразование "треугольника" в "звезду" (рис. 2.8)

2.2.4. Преобразование "звезды" в "треугольник" (рис. 2.8)

Рис. 2.8. – Соединение сопротивлений в "треугольник" и "звезду"

2.4. Расчет разветвленной электрической цепи с одним источником энергии

При расчете электрических цепей в большинстве случаев известны параметры источников ЭДС, сопротивления элементов электрической цепи. Задача расчета электрической цепи сводится к определению токов в ветвях. По найденным токам можно рассчитать напряжения на элементах цепи, мощность отдельных элементов и электрической цепи в целом, мощность источников, сечения проводников.

Для расчета электрических цепей с одним источником энергии применяется метод эквивалентных преобразований, заключающийся в постепенном преобразовании и замене последовательно и параллельно соединенных элементов эквивалентными. Всю группу элементов цепи заменяют одним эквивалентным. Преобразования начинают в ветвях, наиболее удалённых от источника. Затем в преобразованной (предельно простой) цепи по закону Ома определяют ток. Полученные в процессе преобразования расчетные схемы позволяют определить токи во всех остальных ветвях.

Пример 1: Рассчитать эквивалентное сопротивление цепи Rэкв и, токи в каждом резисторе.

Дано: R1 = 3 Ом; R2 = 2 Ом; R3 = 5 Ом; R4 = 10 Ом; E = 50 В.

Рис. 2.9 - Пример эквивалентных преобразований: а) схема электрической цепи до преобразования; б) расчетная схема после первого преобразования; в) - расчетная схема после второго (окончательного) преобразования

Определить токи в ветвях схемы, представленной на рис. 2.9, а.

Выбираем направления токов в ветвях. Преобразуем параллельно соединенные резисторы R2 и R3, заменяя их эквивалентным элементом R2, 3

Расчетная схема после первого преобразования показана на рис. 2.9, б.

Проводим второе преобразование. Для этого последовательно соединенные резисторы R1, R2, 3, R4 заменяем одним эквивалентным RЭКВ.

RЭКВ = R1 + R2, 3 + R4 = 3 + 1,43 + 10 = 14,43 Ом.

Теперь исходная схема сведена к простейшей, показанной на рис. 2.9, в, в которой

Для определения токов I2 и I3, необходимо определить напряжение Uаб, рис. 2.9, а, которое рассчитываем по рис. 2.9, б

Uаб = R2, 3·I1 = 1,43·3,47 = 4,96 В.

Возвращаясь к схеме рис 2.9, а, получим

Для проверки правильности расчета токов составляем баланс мощности. Мощность, вырабатываемая всеми источниками энергии в цепи, должна быть равна мощности, потребляемой всеми приёмниками электрической энергии (нагрузкой). Относительная погрешность расчета не должна превышать одного процента.

Мощность, вырабатываемая источником ЭДС

РИ = Е·I1 = 50·3,47 = 173,5 Вт.

Мощность, потребляемая нагрузкой

Погрешность баланса мощности

Если баланс сходится с допустимой погрешностью, то расчет токов выполнен верно.

Пример выполнения задачи 1.

Для электрической цепи постоянного тока, приведенной на рис. 4:

1. Рассчитать эквивалентное сопротивление цепи.

2. Рассчитать ток в каждом резисторе.

3. Проверить выполнение первого закона Кирхгофа во всех узлах схемы и второго Закона Киhхгофа для одного из контуров.

4. Определить мощности, рассеиваемые на резисторах схемы.

5. Проверить выполнение баланса мощностей

Рис. 4. Электрическая цепь постоянного тока

1. Расчет эквивалентного сопротивления цепи проводим методом последовательных эквивалентных преобразований..

а) б) в)

Рис. 5. "Этапы эквивалентного преодразования электрической цепи

Эквивалентное сопротивление ветвей R3 и R4 соединенных параллельно определяем по формуле:

,

.

Эквивалентное сопротивление элементов R2, R34 и R5, соединенных последовательно находим по формуле:

,

.

Эквивалентное сопротивление всей цепи (R2345 и R1 -соединены параллельно):

,

.

2. Рассчитаем токи во всех ветвях.

Ток, потребляемый цепью от источника питания:

,

.

Ток в ветви R1:

Ток в ветви R2345:

,

.

Определяем потенциал узла «б»:

,

.

Определяем потенциал узла «в»:

.

Очевидно, что I5 = I2, откуда

.

Определяем разность потенциалов между узлами «б» и «в»:

,

.

Определяем токи в ветвях R3 и R4:

,

;

,

.

3. Проверяем выполнение первого закона Кирхгофа для токов в узлах.

Для узла «а»: ,

.

Для узла «б»: ,

.

Для узла «в»: ,

.

Проверяем выполнение второго закона Кирхгофа для контура R5, R3, R2, R1:

,

,

.

4. Определяем мощности, рассеиваемые на резисторах:

,

;

,

;

,

;

,

;

,

.

5. Проверяем выполнение баланса мощностей.

Мощность, потребляемая цепью от источника питания:

,

.

Составляем уравнение для проверки баланса мощностей:

,

,

.

Баланс мощностей выполняется.

Методические указания к выполнению задания 2.

Методы расчета цепей постоянного (переменного) тока

Под расчетом цепи, в общем случае, понимают нахождение токов во всех ветвях схемы.

Основные методы расчета:

1. Метод токов ветвей.

2.Метод контурных токов.

3. Метод узловых напряжений.

4. Метод наложения.

5. Метод эквивалентных преобразований

Метод токов ветвей

  • В общем случае токи сложной электрической цепи могут быть определены в результате совместного решения уравнений, составленных по первому и второму законам Кирхгофа. Для однозначного нахождения всех токов необходимо составить в уравнений, где в- число ветвей схемы (без источников тока).

  • Последовательность расчета следующая:

1. Проводят топологический анализ схемы.

1.1. обозначают токи во всех ветвях (I1, I2, …,Iв), произвольно выбирают их положительное направление и обозначают на схеме стрелками;

1.2. подсчитывают общее число узлов у и определяют число независимых узлов Nу=у-1 и показывают их на схеме;

1.3. подсчитывают число независимых контуров Nk = в-у+1, и показывают их на схеме дугой.

2. По первому закону Кирхгофа для независимых узлов и по второму закону Кирхгофа для независимых контуров относительно токов ветвей записывают уравнения. После приведения подобных членов они сводятся к системе линейных алгебраических уравнений (ЛАУ)

где xi =Ii– искомые токи ветвей; aji – постоянные коэффициенты, зависящие от параметров пассивных элементов схемы; вi – постоянные величины, зависящие от параметров активных элементов схемы.

3. Решая систему из в уравнений относительно токов, по методу Крамера находят токи во всех ветвях схемы:

где D – главный определитель системы; Di – определитель, получается из главного D путем замены i-го столбца на столбец свободных членов вi.

Если значения некоторых токов отрицательные, то действительные направления их будут противоположны первоначально выбранным направлениям. I1

Пример 1. Для электрической цепи рис. 1.1 n = 2, m = 3, и расчет токов цепи осуществляется путем решения следующей системы уравнений