Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Консп_лк_Эн_Эл-ка (1).doc
Скачиваний:
261
Добавлен:
11.03.2016
Размер:
12.2 Mб
Скачать

Трехфазный мостовой инвертор напряжения с межвентильной коммутацией (рис 6).

Угол проводимости тиристоров инвертора составляет 2/3, а порядок их переключения следующий В1—В6—В3—В2—В5—В1... Коммутация тиристоров происходит таким образом. Предположим, что открыты тиристоры В1 и В6, а конденсато­ры С16 заряжены с полярностью, указанной на рисунке без скобок. Для запирания тиристо­ра В1 отпирается тирис­тор В3, в результате че­го образуется контур В1—С1—В3; за счет тока разряда конденсатора С1 тиристор В1 запирается практически мгновенно, и на нем поддерживается отрицательное напряже­ние в течение времени разряда конденсатора С1 по контуру B3—С1—Д7—Д1—L1—В3 до нуля. В связи с тем что в ин­верторе остается откры­тым тиристор другой фазы, это приводит к образованию контура перезаряда коммутирую­щих конденсаторов через указанный тиристор. Например, при отпирании тиристора В3 и запирании тиристора В1 кроме контура В3—С1—Д7—Д1—L1—В3 образуется контур Ud—L1—В3—С3— Д11—Д12-B6-L2-Ud.

Напряжение на коммутирующих конденсаторах инвертора при­мерно равно напряжению источника питания Ud. В этом инверторе коммутирующий конденсатор подключен параллельно нагрузке только в моменты его перезаряда. При высоких частотах (свыше 400 Гц) влияние отсекающих диодов (Д7 — Д12) уменьшается. Это обусловлено тем, что время перезаряда конденсаторов стано­вится соизмеримым, с периодом переменного напряжения на вы­ходе инвертора. Кроме того, при окончании коммутации тока ком­мутирующий дроссель L1 (L2) оказывается закороченным через вентили. Например, при переводе тока с тиристора B1 на тири­стор В3 коммутирующие дроссели будут закорочены: верхний дроссель (L1) закорачивается через вентили Д9 — Д3 — В3, а ниж­ний (L2)—через вентили Д12—В6—Д6. Инвертор на идеаль­ных элементах оказывается неработоспособный. Это объясняется тем, что в коммутационном периоде ток в дросселях L1 и L2 не­сколько возрастает за счет тока перезаряда конденсаторов. Поскольку после этого интервала дроссели будут закорочены вентилями, к началу следующей коммутации ток в дросселе не изме­нится. В следующий период коммутации ток опять несколько воз­растает и т. д., что приводит к беспрерывному возрастанию тока в дросселях. А так как этот ток определяется скоростью переза­ряда коммутирующих конденсаторов, то при большом токе для восстановления запирающих свойств тиристоров остается мало времени и инвертор опрокидывается.

С повышением рабочей частоты инвертора возрастает скорость накопления электромагнитной энергии в дросселях, что приводит к увеличению потерь, а следовательно, к снижению к. п. д. инверто­ра. Улучшить работу инвертора можно за счет введения цепей, предотвращающих накопление электромагнитной энергии в дрос­селях. Такие цепи показаны на рис 6 пунктиром (или резисто­ры R2, или диоды Д и резисторы R1).

Повысить к. п. д. инвертора можно, если коммутирующий дрос­сель вывести из цепи постоянного тока и включить последователь­но с конденсатором (на рис 6 показана пунктиром одна из LC цепей). В этом случае электромагнитная энергия в дросселях не накапливается, так как через них протекает переменный ток. Однако в таком инверторе наблюдаются большие скорости нарас­тания напряжения на тиристорах и повышение напряжения на коммутирующих конденсаторах, а значит, и на тиристорах, с ростом тока нагрузки.

Если инвертор имеет выходной трансформатор, то для устране­ния накопления электромагнитной энергии обратные диоды следует подключать к отпайкам выходного трансформатора, что позволяет осуществить возврат накопленной энергии в период перезаряда конденсаторов в источник питания и тем самым повысить к. п. д. инвертора. При этом в контур, например L1—В3—Д9—Д3, вводят противо-э.д.с., равную Ud n/(1 — n), где n=w'2/w2 (n = 0,1 — 0,2).

Так как длительность открытого состояния тиристоров равна 2/3, то форма выходного напряжения зависит от коэффициента мощно­сти нагрузки.