Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Part 5 Electrical systems.pdf
Скачиваний:
63
Добавлен:
19.02.2016
Размер:
1.39 Mб
Скачать

База нормативной документации: www.complexdoc.ru

c)нити накаливания ламп обычно длиннее, что может потребовать увеличения размеров оптических приборов и световых установок;

d)более сложно точно выполнять управление силой света, особенно на малых ее значениях, или помимо затрат на монтаж весьма значительна стоимость оборудования;

e)одиночный, связанный с заземлением отказ высоковольтного фидера приведет

квыходу из строя всех сетей; и

f)трудно установить местонахождение отказов, обусловленных заземлением.

3.1.4 Сравнение последовательных и параллельных сетей светотехнического оборудования

3.1.4.1 . Часто приемлемое светотехническое оборудование может быть обеспечено либо с помощью последовательных, либо параллельных сетей. Последовательные сети обычно применяются для аэродромных светотехнических систем, в которых инструктивная информация содержится в самой схеме в связи с более единообразной силой света огней и лучшим управлением ею. Данные системы включают большинство огней ВПП и РД, а также значительную часть огней систем огней приближения постоянного излучения. Параллельные сети используются для большей части освещения зон аэродрома, расположенных отдельно или небольшой группой визуальных средств и распределения электроэнергии. К аэродромным системам огней, которые обычно используют параллельные сети, относятся прожекторные огни освещения перрона, другие огни перрона, бегущие проблесковые огни, предназначенные для Особых целей визуальные средства, например, маяки и указатели направления ветра, некоторые заградительные огни и сети распределения электропитания.

3.2 ПОСЛЕДОВАТЕЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ СХЕМЫ АЭРОДРОМНЫХ ОГНЕЙ

3.2.1Подлежащие рассмотрению факторы

3.2.1.1В том случае, когда предполагается использование параллельных сетей, необходимо произвести оценку определенных характеристик предполагаемого к использованию оборудования. Зачастую после того, как выбор произведен, он уменьшает возможности выбора другого оборудования. Прежде всего необходимо произвести анализ всей сети по определению критических характеристик, надежности, экономичности монтажа и работы, легкости выполнения технического обслуживания и взаимосвязи ряда типов оборудования. К числу подлежащих выбору факторов относится изложенное ниже.

38

База нормативной документации: www.complexdoc.ru

3.2.1.2Выбор тока. Разработанное оборудование ограничило доступные возможности выбора используемого тока в конкретных последовательных сетях. Значение тока в большинстве аэродромных последовательных сетей огней составляет 6,6 или 20 ампер при расчетной полной силе света, хотя иногда используются и другие значения. Для провода кабеля постоянного сечения и длины при токе в сети 6,6 ампер потеря мощности в линии составляет, примерно, одну девятую от потери для 20 амперных цепей. Каждое из значений тока может передаваться по кабелю с изоляцией, рассчитанной на 5000 вольт, проводниками диаметром 4 мм без значительного повышения температуры. Нагрузка на стабилизатор в последовательных сетях должна составлять как минимум половину от расчетного значения. Для протяженных сетей с меньшей электрической нагрузкой обычно используются сети с током в 6,6 ампера, а для больших нагрузок

именьших длин кабеля используются сети с током в 20 ампер (относительно характеристик стабилизаторов см. п. 3.2.1.4). Значения тока в сетях посадочных огней ВПП и РД обычно составляют 6,6 ампера, а огни приближения и зоны приземления обычно имеют сети в 20 ампер. Значения тока в цепях осевой линии ВПП и РД могут быть как 6,6, так и 20 ампер. Следует обратить внимание на то, что ток сети не всегда определяется той величиной, которая имеется на зажимах ламп. Например, правильный выбор развязывающих трансформаторов позволяет использовать 6,6-амперные лампы в 20-амперных цепях и 20-амперные лампы в 6,6-амперных цепях, или в каждой из сетей может использоваться комбинация значений тока в лампах.

3.2.1.3Сети аэродромного светотехнического оборудования. Предпочтительным размещением сетей аэродромного светотехнического оборудования является ряд контуров последовательных сетей высокого напряжения, в каждом из которых установлен последовательно включенный изолирующий трансформатор, а каждая сеть получает электроэнергию от примыкающей к концу ВПП подстанции. Для всех аэродромов предпочтительным является наличие одной подстанции на каждый конец ВПП.

a)В разделе 8.2 Приложения 14 указывается, что на ВПП, оборудованных для точного захода на посадку, схема электрической сети разрабатывается таким образом, чтобы при выходе из строя одного участка электросети пилот не оставался без визуальной ориентации, и чтобы не было искажения световой картины.

b)Системы огней приближения и огней ВПП. Каждую систему огней приближения и огней ВПП необходимо прокладывать с помощью как минимум двух сетей. Примеры сетей, которые уложены с учетом повышения целостности, показаны на рисунках 3-1 - 3-7. Каждая из сетей в системе прокладки должна охватывать систему в целом и строиться таким образом, что в случае отказа одной или более сетей сохранялась сбалансированная симметричная схема огней. Энергия к огням порога ВПП обычно подается от отдельных сетей. Огни осевой линии ВПП должны быть проложены таким образом, чтобы это не нарушало их

39

База нормативной документации: www.complexdoc.ru

цветовую кодировку. Участки системы осевой линии, состоящие только из белых огней и только из красных огней могут прокладываться как показано на рис. 3-5а. В Приложении 14 предусматривается, что осевые огни ВПП на участке от точки, расположенной в 900 м от конца ВПП (или от средней точки ВПП для тех полос, длина которых менее 1800 м) до точки, расположенной в 300 м от конца ВПП, снабжаются попеременно чередующимися белыми и красными огнями, за исключением случая, когда осевые огни ВПП располагаются с интервалом 7,5 м и при этом используются попарно чередующиеся переменно-белые и красные огни. Образцы прокладки сетей, которые будут сохранять требуемую кодировку цвета, показаны на рисунках 3-5b и 3-5с. В случае отказа одной из сетей в схеме огней и прокладки, указанной на рис. 3-5с, появится схема чередующихся красных и белых огней, размещаемых на одинаковом расстоянии с удвоенным по сравнению с нормальным интервалом. Данное размещение аналогично полностью белым и полностью красным участкам при отказе одной из сетей. В схеме огней и прокладки, указанной на рис. 3-5Ь, расстояние будет в три раза больше нормальных интервалов, после чего интервалы будут нормальными.

c)Системы визуальной индикации глиссады. Системы визуальной индикации глиссады должны иметь по две сети на каждом из концов ВПП. В тех случаях, когда системами визуальной индикации глиссады являются VASIS, 3-BAR VASIS или T-VASIS, электроэнергия ко всем установкам огней по одну сторону от ВПП должна подаваться по одной и той же сети. Данное расположение обеспечивает то, что в случае отказа одной из сетей на другой стороне ВПП будет сохранена полная схема огней. Когда системы индикации глиссады устанавливаются только по одну сторону от ВПП, например, при использовании PAPI, AVASIS, 3-BAR AVASIS и AT-VASIS для сохранения целостности схемы часть ламп каждой из световых установок должна связываться с одной сетью, а другая часть - с другой, что однако уменьшит их силу света при отказе. Системы визуальной индикации глиссады подлежат выключению в том случае, если в результате выхода из строя световой установки появится дезориентирующая форма сигнала.

d)Огни РД. Огни РД следует рассчитывать на использование последовательных сетей. Сети огней осевой линии РД следует прокладывать по схеме, указанной на рис. 3-5а, для тех частей системы РД, которые используются в условиях категории III, но по экономическим причинам для других РД может использоваться одна сеть. Огни РД должны подключаться таким образом, чтобы позволить выборочное освещение участков системы для обеспечения наведения по курсу пилотам. Эта особенность может быть получена за счет использования индивидуальных стабилизаторов постоянного тока для каждого участка или путем подключения нескольких участков к одному стабилизатору и использования селекторных реле либо на аэродроме, либо в стабилизаторе для замыкания сети, участки которой не являются частью маршрута движения. Примите к сведению, что номинальное значение напряжения селекторных реле должно быть выше напряжения разомкнутой цепи стабилизатора. Избирательное переключение может достигаться несколькими способами. Такими способами являются:

40

База нормативной документации: www.complexdoc.ru

1)использование для каждого участка переключателя управления. Предпочтительным местом расположения таких переключателей является схема в виде факсимиле на приборной панели управления аэродромного диспетчерского пункта с каждым переключателем, размещаемым на участке, которым он управляет;

2)взаимные соединения органов управления, от которых подается питание стабилизаторам или селекторным реле, таким образом, что задействование одного переключателя вызовет освещение всех участков назначенного маршрута; и

3)использование микровычислителя, запрограммированного для освещения оптимального маршрута после того, как оператор назначает используемый сход с ВПП и место назначения воздушного судна.

e)Огни линии "стоп". Огни линии "стоп" должны управляться независимо друг от друга и огней РД. Электрические сети должны рассчитываться таким образом, чтобы все огни линии "стоп" не отказывали одновременно. Огни линии "стоп" должны быть взаимно связаны. Они могут обеспечиваться электропитанием по двум отдельным сетям или от двух общих сетей с управляющими реле, расположенными рядом с линией "стоп". Огни линии "стоп" могут подключаться к взаимосвязанным системам огней ВПП или РД с каждым огнем линии "стоп", управляемым с помощью реле, который замыкает цепь огней линии "стоп" в тех случаях, когда это желательно для их отключения. Для снижения требований к напряжению, обусловленных этими реле, огни линии "стоп" следует подключать к системе огней ВПП или РД через изолирующий трансформатор соответствующей мощности с замкнутым накоротко реле, подключенным через вторичную обмотку изолирующего трансформатора. Применяемые сети огней ВПП и РД должны запитываться в тех случаях, когда требуется использование огней линии "стоп". Реле, управляющие огнями линии "стоп", должны подключаться таким образом, чтобы поступление питания управления требовалось для выключения огней линии "стоп". Поэтому огни линии "стоп" будут работать, если произойдет отказ сети управления.

f)Заземление. Все оборудование центра управления/распределения должно быть соединено с землей. Земляной провод (противовес) должен быть также проложен от центров распределения с последовательными цепями кабелей. Вспомогательные стенки всех изолирующих трансформаторов и опоры всех приподнятых над поверхностью огней должны быть соединены с этим проводом. Провод заземления должен устанавливаться над кабелями сети в канале ближе к поверхности или в той же самой траншее глубиной не менее 10 см над верхней частью кабеля. Как правило, в качестве проводов заземления используются неизолированные провода.

41

База нормативной документации: www.complexdoc.ru

Рис. 3-1. Система огней приближения типа А для точного захода на посадку (система с кодированной по дальности осевой линией)

42

База нормативной документации: www.complexdoc.ru

Рис. 3-2. Дополнительные огни для расширения системы огней приближения типа

Адля точного захода на посадку (система с кодированной по дальности осевой линией) до системы огней приближения для точного захода на посадку по

категории II и III

43

База нормативной документации: www.complexdoc.ru

ВАРИАНТ А. ИСПОЛЬЗОВАНИЕ ЧЕРЕДУЮЩИХСЯ ЛИНЕЙНЫХ ОГНЕЙ

Рис. 3-3. Система огней приближения типа В для точного захода на посадку (система с линейными огнями в качестве осевой линии)

44

База нормативной документации: www.complexdoc.ru

ВАРИАНТ В. ИСПОЛЬЗОВАНИЕ ЧЕРЕДУЮЩИХСЯ ОГНЕЙ В КАЖДОМ ЛИНЕЙНОМ ОГНЕ ДЛЯ ОБЕСПЕЧЕНИЯ АНАЛОГИЧНОГО ВНЕШНЕГО ВИДА ПРИ РАБОТЕ ОТ ЛЮБОЙ ОДНОЙ СЕТИ

Рис. 3-3. Система огней приближения типа В для точного захода на посадку (система с линейными огнями в качестве осевой линии)

45

База нормативной документации: www.complexdoc.ru

ВАРИАНТ С. ИСПОЛЬЗОВАНИЕ ЧЕРЕДУЮЩИХСЯ ОГНЕЙ В КАЖДОМ ЛИНЕЙНОМ ОГНЕ СО ВСЕМИ ОГНЯМИ, ИДЕНТИЧНЫМИ ДЛЯ ЛЮБОГО РЕЖИМА РАБОТАЮЩЕЙ СЕТИ

Рис. 3-3. Система огней приближения типа в для точного захода на посадку (система с линейными огнями в качестве осевой линии)

46

База нормативной документации: www.complexdoc.ru

Рис. 3-4. Дополнительные огни для расширения системы огней приближения типа В для точного захода на посадку (система с линейными огнями в качестве осевой линии) до системы огней приближения для точного захода на посадку по категории

II и III

(Дополнительные огни для системы с кодированной по дальности осевой линией показаны на рис. 3-2)

47

База нормативной документации: www.complexdoc.ru

Рис. 3-5. Огни осевой линии ВПП или РД, запитываемые попеременно от двух сетей

48

База нормативной документации: www.complexdoc.ru

Рис. 3-6. Посадочные огни ВПП, запитываемые попеременно от двух последовательных сетей

49

База нормативной документации: www.complexdoc.ru

ПРИМЕЧАНИЕ. При совместном использовании с системой огней приближения типа А для точного захода на посадку каждый линейный огонь должен иметь четыре огня.

Рис. 3-7. Огни зоны приземления, запитываемые попеременно от двух последовательных сетей

3.2.1.4 Стабилизаторы постоянного тока. Для большинства аэродромных наземных сетей светотехнического оборудования электроэнергия подается с помощью стабилизаторов постоянного тока (последовательные сети). Эти стабилизаторы предназначены для создания постоянного тока на выходе,

50

База нормативной документации: www.complexdoc.ru

независимо от колебаний нагрузки в сети и от напряжения источника питания. Они также предназначены для создания двух или более значений тока на выходе в тех случаях, когда требуется уменьшение освещения. Ниже приводятся некоторые типы стабилизаторов постоянного тока, используемых для аэродромных огней.

a)Стабилизаторы с подвижной катушкой. Стабилизаторы с подвижной катушкой использовались в течение многих лет для подачи энергии в последовательные сети огней. Этот тип стабилизатора имеет раздельные первичную и вторичную катушки, которые являются подвижными относительно друг друга, за счет чего изменяется значение магнитной утечки реактивного сопротивления входных и выходных цепей. Это реактивное сопротивление автоматически регулируется до значения, которое, как часть составного полного сопротивления нагрузки, обеспечивает постоянство тока в цепи. Требуемый выходной ток создает силу отталкивания, которая устанавливает подвижную катушку в такое положение, которое определяет данные параметры тока. Достигается такое состояние механического равновесия, когда сила отталкивания точно балансирует вес подвижной катушки. Любые изменения нагрузки или входного напряжения вызывают мгновенное противодействие за счет перемещения подвижной катушки до восстановления электромеханического баланса. Управление силой тока достигается за счет использования трансформатора с отводами на выходе стабилизатора. Основными недостатками стабилизатора с подвижной катушкой являются механическое движение катушек и низкий коэффициент мощности в нагрузках, значение которых ниже номинального. Если нагрузка составляет 50 процентов от номинального значения, коэффициент мощности может составить 75 процентов или ниже. Кроме того, некоторые типы стабилизаторов с подвижной катушкой требуют точной балансировки в горизонтальном положении и устранения вибрации.

b)Моноциклические сбалансированные стабилизаторы. Одним из видов стационарных стабилизаторов постоянного тока (где нет подвижных частей) для последовательных цепей является моноцикличный сбалансированный стабилизатор. Обычно схема стабилизатора тока состоит из двух индуктивных и двух конденсаторных стабилизаторов с одинаковым реактивным сопротивлением (резонансом) на промышленной частоте, установленным в схеме типа "мост". В подобной сети вторичный ток не зависит от полного сопротивления нагрузки. Управление силой тока может обеспечиваться за счет использования трансформатора с отводами на выходе или входе или путем плавного регулирования входного трансформатора. Преимуществом этого типа стабилизаторов является отсутствие подвижных частей и высокий коэффициент мощности. Недостатком является отсутствие коррекции изменения напряжения на входе и неблагоприятное влияние на стабилизацию, вызываемое нагрузками, являющимися причиной гармоник высокой частоты в резонансных схемах, таких как вторичные обмотки с открытым контуром последовательно соединенных изолирующих трансформаторов и газопаровых ламп.

51

База нормативной документации: www.complexdoc.ru

c)Компенсированные стабилизаторы статичного типа. Путем определения вторичного тока от стабилизатора может быть достигнута корректировка в моноцикличной сбалансированной сети или в схеме стабилизации тока с целью компенсации колебаний напряжения в первичной цепи и частоты гармоник, вызываемых вторичными обмотками с открытым контуром изолирующих трансформаторов. Эта компенсация обеспечивает повышенную стабилизацию тока

ипредотвращает сокращение срока службы ламп от повышения величины вторичного тока выше номинальной.

d)Стабилизаторы постоянного тока с использованием схем управления на основе "твердого тела".В стабилизаторах этого типа используются цепи переменного тока на основе "твердого тела" в целях управления утечкой реактивного сопротивления. Этот метод позволяет использовать низкие уровни контроля для получения постоянного тока от стабилизаторов с электрическими характеристиками постоянного напряжения, последовательно-резонансных сетей. Такие органы управления на основе "твердого тела" обеспечивают быструю реакцию, высокий коэффициент мощности, облегчают создание компактных стабилизаторов с простым техническим обслуживанием органов управления.

3.2.1.5 Эксплуатационные характеристики стабилизаторов постоянного тока. Стабилизаторы постоянного тока, обеспечивающие электропитание сетям аэродромных огней, должны быть в состоянии:

a)поддерживать на выходе величину постоянного тока в пределах ± 2 процента для любой нагрузки от одной второй до полной нагрузки при наличии до 30 процентов изолирующих трансформаторов, имеющих незамкнутые вторичные обмотки;

b)показывать наличие замыкания на землю в сети, обеспечивая одновременно нормальную эксплуатацию при наличии единичного замыкания на землю;

c)иметь высокую степень надежности и не иметь в связи с этим подвижных частей;

d)включать устройство размыкания сети, которое отключает в течение двух секунд первичное напряжение и требует выполнения повторной регулировки стабилизатора;

e)реагировать на изменения в сети в пределах 15 циклов;

f)включать в себя устройство для обеспечения безопасности, отключающее стабилизатор или обеспечивающее уменьшение силы тока в случае избыточного значения тока;

52

База нормативной документации: www.complexdoc.ru

g)обеспечивать необходимое количество положений регулировки силы тока или, если требуется, непрерывное плавное управление величиной тока. Необходимо, чтобы стабилизаторы проектировались таким образом, чтобы регулировка силы тока могла изменяться без их выключения;

h)электрически изолировать сеть основного питания от вторичной сети огней; и

i)длительно работать при полной нагрузке при окружающей температуре в диапазоне между -40°с и +55°с, относительной влажности между 10 и 100 процентами и на абсолютных высотах до 2000 м.

3.2.1.6 Основные характеристики стабилизаторов постоянного тока. Примерами основных, характеристик имеющихся стабилизаторов постоянного тока являются следующие:

a)Мощность. Выходные (вторичные) нагрузки в диапазоне от 4 до 70 квт. В данном диапазоне имеются различные значения нагрузок.

b)Вторичный ток (ток на выходе). Наиболее частым значением является 6,6 и 20 ампер. Часто используются приборы, обеспечивающие ток 6.,6 ампер для нагрузок до 30 квт и 20 ампер для нагрузок в 10 квт и более.

c)Частота. Обычно предусматривается, что частота основного источника электроэнергии составляет 50 или 60 Гц.

d)Первичное напряжение. Используется стандартное первичное напряжение в диапазоне от 120 до 12 000 вольт. В одном из государств используется первичное напряжение в 240 вольт до мощности в 30 квт и 2400 вольт для мощности от 10 до 70 квт. Могут использоваться также и другие значения первичного напряжения.

3.2.1.7 Изолирующие трансформаторы. В большинстве сетей аэродромных огней используются изолирующие трансформаторы, которые обеспечивают непрерывность последовательной цепи с тем, чтобы в случае выхода из строя лампы не произошло отказа, связанного с размыканием цепи. Второй функцией изолирующих трансформаторов является обеспечение электрической изоляции лампы с целью безопасности от сети высокого напряжения. Непрерывность цепи может также быть обеспечена с помощью шунтирующих устройств, таких например, как пленочные предохранители, которые замыкаются при выходе лампы из строя, но в такой схеме лампа может находиться под высоким потенциалом при подаче электроэнергии в сеть. Изолирующие трансформаторы используются для подачи соответствующего тока в лампу в том случае, если ток в ней отличается от того значения, которое имеется в последовательной цепи.

a) Конструкция трансформатора. Изолирующий трансформатор состоит из первичной и вторичной обмоток, которые намотаны на размещенный .в

53

База нормативной документации: www.complexdoc.ru

водонепроницаемой коробке магнитный сердечник и имеет первичные и вторичные отводы для соединения последовательной сети с лампой. Первичная и вторичная обмотки электрически изолированы, но имеют связь с помощью магнитной цепи. Вторичная цепь подвержена меньшему электрическому потенциалу и один из ее выводов должен быть заземлен. Сердечник изолирующего трансформатора в процессе работы в отношении магнитных свойств ненасыщен, но становится насыщенным в случае выхода из строя лампы или размыкания вторичной цепи и, таким образом, поддерживает целостность первичной сети. Если в цепи лампы происходит короткое замыкание, изолирующий трансформатор выходит из нагруженного состояния и оказывает минимальное воздействие на последовательную сеть. Необходимо, чтобы данные трансформаторы имели возможность непрерывной работы без возникновения повреждений при расчетной нагрузке, размыкании сети или коротком замыкании в сети. Отношение витков первичной обмотки к вторичной обмотке трансформатора тока составляет 1:1 в том случае, если ток в лампе соответствует току в последовательной цепи; в противном случае оно обратно пропорционально отношению значений тока.

b)Кожух. Водонепроницаемый кожух, в который помещаются сердечник, обмотки и выводы, может быть изготовлен из металла, резины или пластика и он должен быть пригодным для монтажа непосредственно под землей, под водой, на фундаменте или в условиях воздействия метеоусловий. Необходимо, чтобы кожух предохранял трансформатор от повреждения в случае его падения или транспортировки за один провод. Кожух должен противодействовать проникновению воды во внутреннюю полость, а при подсоединении к нему проводов сохранять упругость с целью избежания разрушения и повреждения при очень низких температурах, а также защищать прибор в ходе транспортировки, хранения, монтажа и обслуживания. Необходимо, чтобы выводы первичной обмотки имели сечение не менее 8,4 мм и сопротивление их изоляции должно быть рассчитано не менее чем на 5000 вольт. Эти выводы должны быть не короче 50 см. Обычно на таких выводах размещаются соединительные устройства типа штепселя на одном из проводов и гнездо на другом, которые пригодны для подсоединения к кабелю последовательной сети. Выводы вторичной обмотки должны иметь по два проводника, сечение каждого из которых не менее 3,3 мм, сопротивление изоляции не менее 600 вольт и длина не менее 100 см. Обычно такие выводы обеспечиваются соответствующими двухпроводниковыми соединителями, которые позволяют подключить их к огню.

c)Температура окружающей среды. Данные трансформаторы должны быть способными работать при температурах в диапазоне от -55°С до +65°С.

d)Параметры изолирующих трансформаторов тока. Параметрами изолирующих трансформаторов являются выходная мощность, ток в первичной и вторичной обмотках, частота и напряжение изоляции первичной и вторичной сетей. Данные трансформаторы могут быть легко изготовлены почти для любых желаемых параметров. Наиболее часто используются некоторые из следующих параметров:

54

База нормативной документации: www.complexdoc.ru

1)Мощность. Часто используется номинальная мощность 30/45, 65, 100, 200, 300 и 500 ватт, а иногда 1000 и 1500 ватт.

2)Ток. Номинальные значения тока обычно даются в виде отношения первичного тока ко вторичному. Общепринятыми значениями являются 6,6/6,6, 20/ 20, 6,6/-20 и 20/6,6 ампер.

3)Частота. Принятыми значениями частот являются 50 и 60 Гц. Желательно использовать трансформатор на той частоте, для которой он рассчитан .

4)Изоляция. Большинство изолирующих трансформаторов имеют изоляцию, рассчитанную на 5000 вольт в первичной цепи и 600 вольт во вторичной. Рассчитанные на большие значения мощности трансформаторы могут потребовать более высокой вторичной изоляции в связи с тем, что напряжение размыкания сети выше.

e)Питание ламп от одного трансформатора. Желательно, чтобы каждый огонь получал электроэнергию от своего изолирующего трансформатора. В ряде случаев для уменьшения стоимости монтажа как, например, при установке огней осевой линии на существующих ВПП или для уменьшения массы и прочности кабелей, как, например, для высоких ломких опор посадочных огней, некоторые из ламп могут быть соединены последовательно с одним изолирующим трансформатором. Естественно, трансформатор должен иметь мощность достаточную для обеспечения питания всех ламп плюс потери в линии. Двумя связанными с данной схемой проблемами являются: первая - при отказе одной из ламп, вызывающем размыкание сети, другие лампы становятся неработающими до подключения соответствующих шунтирующих устройств; и вторая - в случае связанного с размыканием сети отказа мгновенное значение вторичного напряжения может быть очень большим и особенно для изолирующих трансформаторов большой мощности. Данные проблемы рассмотрены ниже.

f)Воздействие размыкания сети вторичной обмотки изолирующих трансформаторов. Конструкции большинства изолирующих трансформаторов ограничивает среднеквадратичное значение напряжения при размыкании вторичной цепи значением в 300 вольт или ниже. Однако мгновенное значение напряжения ряда изолирующих трансформаторов в момент размыкания сети может превышать 1000 вольт. Изолирующие трансформаторы, магнитный сердечник которых рассчитан на насыщение при напряжении несколько более высокое, чем рабочее напряжение, обычно имеют меньшее среднеквадратичное значение напряжения и мгновенное пиковое напряжение во вторичной цепи при размыкании, чем трансформаторы с меньшим насыщением. Высокие значения среднеквадратичного напряжения при размыкании сети требуют более высокой изоляции вторичной обмотки и представляют большую опасность в плане возможного электрического удара, однако они обуславливают более надежную работу пленочных предохранителей. Реактивное сопротивление изолирующих

55

База нормативной документации: www.complexdoc.ru

трансформаторов тока при размыкании вторичной цепи приводит к нарушению формы тока первичной цепи и возникающие гармонические частоты могут оказать воздействие на управление некоторыми типами стабилизаторов постоянного тока.

g) Шунтирующие устройства для ламп. Независимо от того, соединены ли лампы в последовательную цепь или они сгруппированы в ряд и подсоединены к одному изолирующему трансформатору, при перегорании нити накаливания одной из ламп вся группа ламп выходит из строя в том случае, если отсутствует подходящее шунтирующее устройство, которое подсоединено к контактам отказавшей лампы. В течение многих лет использования последовательных цепей огней без изолирующих трансформаторов для шунтирования вышедшей из строя лампы использовались предохранительные пленочные устройства. Для этого между клеммами каждой из ламп устанавливаются придерживаемые пружинами контакты. Эти контакты разделены пленочным предохранителем в виде небольшого диска тонкой непроводящей пленки между проводящими внешними поверхностями. В тех случаях, когда лампа работает, пленочный диск обеспечивает изоляцию контактов лампы друг от друга и нить накаливания лампы замыкает последовательную сеть. В том случае, если нить накаливания лампы отказывает, напряжение на зажимах лампы быстро возрастает до значения (возможно, 1000 вольт), при котором пробивается пленка, замыкаются контакты лампы и восстанавливается последовательная сеть до срабатывания устройств защиты от размыкания сети стабилизатора постоянного тока. При замене лампы должен устанавливаться новый пленочный предохранитель. Перерыв в работе других ламп небольшой сети, подключенной последовательно со вторичной обмоткой изолирующего трансформатора, когда отказывает одна лампа, возможно, не будет приемлемым и для этих ламп потребуется шунтирующее устройство. Пиковое значение напряжения на вторичной обмотке некоторых изолирующих трансформаторов при размыкании сети может достигать от 100 до 200 вольт или меньше. Имеются в наличии пленочные предохранители, которые работают при этих напряжениях, но, возможно, они будут ненадежными, поскольку эта величина напряжения при размыкании сети может не вызывать пробоя пленочного предохранителя и замыкания контактов отказавшей лампы. Последние разработки шунтирующих устройств для ламп в этих сетях соответствуют замыкающим реле. Эти реле более дорогостоящие по сравнению с пленочными предохранителями, но обеспечивают более надежную работу.

3.2.1.8 Соединения для последовательных сетей. Соединения в последовательных сетях должны выполняться тщательно, чтобы обеспечить неразрывность сети и предотвратить возникновение замыканий на землю. Отказ, связанный с размыканием сети в первичной обмотке, приведет к выходу из строя всех огней в этой сети. Если стабилизатор постоянного тока не оборудован защитой от размыкания сети, то он может быть поврежден. Большинство замыканий на землю в последовательных цепях происходят в местах соединений. Одиночное замыкание на землю не вызывает выхода из строя огней, но два или

56

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]