Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

[Boyd]_cvxslides

.pdf
Скачиваний:
7
Добавлен:
03.06.2015
Размер:
1.74 Mб
Скачать

total variation reconstruction example

 

 

 

 

 

2

 

 

 

 

i

0

2

 

 

 

xˆ

 

 

 

 

 

 

 

 

 

1

 

 

 

−2

 

 

 

 

x 0

 

 

 

 

0

 

 

 

 

2

 

 

 

 

 

−1

 

 

 

 

 

 

 

 

 

i

 

−2

500

1000

1500

xˆ

0

0

2000

 

2

 

 

 

−2

 

 

 

 

0

 

 

 

 

 

1

 

 

 

 

2

 

 

 

 

 

cor 0

 

 

 

i

0

x

 

 

 

xˆ

 

 

 

 

−1

 

 

 

 

 

−2

 

 

 

−2

0

500

1000

1500

2000

0

 

 

i

 

 

 

500

1000

1500

2000

500

1000

1500

2000

500

1000

1500

2000

i

original signal x and noisy

three

solutions on trade-o curve

signal xcor

kxˆ

− xcork2 versus φquad(ˆx)

quadratic smoothing smooths out noise and sharp transitions in signal

Approximation and fitting

6–15

 

 

 

 

 

2

2

 

 

 

xˆ

0

 

 

 

 

 

1

 

 

 

−2

 

 

 

 

x 0

 

 

 

 

0

 

 

 

 

2

 

 

 

 

 

−1

 

 

 

 

 

−2

 

 

 

xˆ

0

500

1000

1500

2000

 

0

 

2

 

 

 

−2

 

 

 

 

0

 

 

 

 

 

1

 

 

 

 

2

 

 

 

 

 

cor 0

 

 

 

xˆ

 

x

 

 

 

0

−1

 

 

 

 

 

−2

 

 

 

−2

500

1000

1500

2000

0

0

 

 

i

 

 

 

500

1000

1500

2000

500

1000

1500

2000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

500

1000

1500

2000

i

original signal x and noisy

three solutions on trade-o curve

signal xcor

kxˆ − xcork2 versus φtv(ˆx)

total variation smoothing preserves sharp transitions in signal

Approximation and fitting

6–16

Robust approximation

minimize kAx − bk with uncertain A

two approaches:

stochastic: assume A is random, minimize E kAx − bk

worst-case: set A of possible values of A, minimize supA A kAx − bk

tractable only in special cases (certain norms k · k, distributions, sets A)

example: A(u) = A0 + uA1

xnom minimizes kA0x − bk22

xstoch minimizes E kA(u)x − bk22 with u uniform on [−1, 1]

xwc minimizes sup−1≤u≤1 kA(u)x − bk22 figure shows r(u) = kA(u)x − bk2

Approximation and fitting

 

12

 

 

 

 

 

10

xnom

 

 

 

 

 

 

 

 

 

8

 

 

 

 

u)

6

xstoch

 

 

 

r(

 

 

 

 

 

xwc

 

 

 

 

4

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

0

 

 

 

 

 

−2

−1

0

1

2

 

 

 

u

 

 

 

 

 

 

 

6–17

 

¯

 

T

U = P

stochastic robust LS with A = A + U, U random, E U = 0, E U

 

minimize

¯

2

 

 

E k(A + U)x − bk2

 

 

• explicit expression for objective:

2

 

¯

 

 

 

2

 

 

E kAx − bk2

= E kAx − b + Uxk2

 

 

 

¯

2

+ E x

T

U

T

Ux

 

= kAx − bk2

 

 

 

¯

2

+ x

T

P x

 

 

 

= kAx − bk2

 

 

 

• hence, robust LS problem is equivalent to LS problem

¯

2

+ kP

1/2

2

minimize kAx − bk2

 

xk2

• for P = δI, get Tikhonov regularized problem

¯

2

2

minimize kAx − bk2

+ δkxk2

Approximation and fitting

6–18

 

¯

≤ 1}

worst-case robust LS with A = {A + u1A1 + · · · + upAp | kuk2

minimize

supA A kAx − bk22 = supkuk2≤1 kP (x)u + q(x)k22

where P (x) =

A1x A2x · · · Apx , q(x) = Ax¯ − b

 

• from page 5–14, strong duality holds between the following problems

maximize

kP u + qk22

minimize

t + λ

 

 

 

 

 

subject to

u 2

 

1

 

 

I

P

q

 

 

 

 

k k2

 

subject to

qT

0

t

0

 

 

 

P T

λI

0

 

 

• hence, robust LS problem is equivalent to SDP

minimize

t + λ

 

 

 

 

 

I

P (x)

q(x)

 

 

 

subject to

 

P (x)T

λI

0

0

q(x)T

0

t

Approximation and fitting

6–19

example: histogram of residuals

r(u) = k(A0 + u1A1 + u2A2)x − bk2

with u uniformly distributed on unit disk, for three values of x

frequency

0.25

 

 

 

 

 

0.2

 

 

xrls

 

 

0.15

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

xtik

 

xls

0.05

 

 

 

 

0

 

 

 

 

 

0

1

2

3

4

5

 

 

 

r(u)

 

 

xls minimizes kA0x − bk2

xtik minimizes kA0x − bk22 + δkxk22 (Tikhonov solution)

xrls minimizes supkuk2≤1 kA0x − bk22 + kxk22

Approximation and fitting

6–20

Convex Optimization — Boyd & Vandenberghe

7.Statistical estimation

maximum likelihood estimation

optimal detector design

experiment design

7–1

Parametric distribution estimation

distribution estimation problem: estimate probability density p(y) of a random variable from observed values

parametric distribution estimation: choose from a family of densities px(y), indexed by a parameter x

maximum likelihood estimation

maximize (over x) log px(y)

y is observed value

l(x) = log px(y) is called log-likelihood function

can add constraints x C explicitly, or define px(y) = 0 for x 6 C

a convex optimization problem if log px(y) is concave in x for fixed y

Statistical estimation

7–2

Linear measurements with IID noise

linear measurement model

yi = aTi x + vi, i = 1, . . . , m

x Rn is vector of unknown parameters

vi is IID measurement noise, with density p(z)

yi is measurement: y Rm has density px(y) =

maximum likelihood estimate: any solution x of

Qm p(yi − aT x)

i=1 i

maximize l(x) = Pm log p(yi − aT x)

i=1 i

(y is observed value)

Statistical estimation

7–3

examples

• Gaussian noise N (0, σ2): p(z) = (2πσ2)−1/2ez2/(2σ2),

l(x) = −m2 log(2πσ2) − 12 Xm (aTi x − yi)2

i=1

ML estimate is LS solution

• Laplacian noise: p(z) = (1/(2a))e−|z|/a,

l(x) = −m log(2a) − a1 Xm |aTi x − yi|

i=1

ML estimate is ℓ1-norm solution

• uniform noise on [−a, a]:

l(x) =

−m log(2a)

|aiT x − yi| ≤ a, i = 1, . . . , m

 

−∞

otherwise

ML estimate is any x with |aTi x − yi| ≤ a

Statistical estimation

7–4