Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

[Boyd]_cvxslides

.pdf
Скачиваний:
7
Добавлен:
03.06.2015
Размер:
1.74 Mб
Скачать

Standard form LP

minimize

cT x

subject to

Ax = b, x 0

dual function

• Lagrangian is

L(x, λ, ν) = cT x + νT (Ax − b) − λT x = −bT ν + (c + AT ν − λ)T x

• L is a ne in x, hence

 

 

g(λ, ν) = inf L(x, λ, ν) =

−bT ν AT ν − λ + c = 0

x

−∞ otherwise

g is linear on a ne domain {(λ, ν) | AT ν − λ + c = 0}, hence concave

lower bound property: p ≥ −bT ν if AT ν + c 0

Duality

5–5

Equality constrained norm minimization

 

 

 

 

minimize

kxk

 

 

 

 

 

 

subject to

Ax = b

 

dual function

 

 

 

 

 

 

 

g(ν) = inf(

x

k −

νT Ax + bT

ν) =

bT ν

kAT νk ≤ 1

x

k

 

 

 

−∞

otherwise

where kvk = supkuk≤1 uT v is dual norm of k · k

proof: follows from infx(kxk − yT x) = 0 if kyk ≤ 1, −∞ otherwise

• if kyk ≤ 1, then kxk − yT x ≥ 0 for all x, with equality if x = 0

• if kyk > 1, choose x = tu where kuk ≤ 1, uT y = kyk > 1: kxk − yT x = t(kuk − kyk ) → −∞ as t → ∞

lower bound property: p ≥ bT ν if kAT νk ≤ 1

Duality

5–6

Two-way partitioning

minimize

xT W x

subject to

x2

= 1, i = 1, . . . , n

 

i

 

a nonconvex problem; feasible set contains 2n discrete points

interpretation: partition {1, . . . , n} in two sets; Wij is cost of assigning i, j to the same set; −Wij is cost of assigning to di erent sets

dual function

X

 

 

 

 

−1T ν

W + diag(ν) 0

g(ν) = inf(xT W x +

(x2

 

=

 

ν

− 1))

=

inf

x

T (W + diag(ν))x

1T

ν

x

i

i

x

 

 

 

 

i

 

 

 

−∞

 

 

 

 

 

 

 

 

 

otherwise

 

 

 

lower bound property: p ≥ −1T ν if W + diag(ν) 0 example: ν = −λmin(W )1 gives bound p ≥ nλmin(W )

Duality

5–7

Lagrange dual and conjugate function

 

minimize

f0(x)

 

 

 

 

 

 

 

subject to

Ax b,

 

Cx = d

 

 

 

 

dual function

 

 

 

 

 

 

 

 

 

 

g(λ, ν) =

inf

f0

f0(x) + (AT λ + CT ν)T x

bT λ

dT ν

 

x

T

T

T

T

 

 

 

dom

 

 

 

 

 

 

 

 

 

= −f0 (−A λ − C ν) − b λ − d ν

• recall definition of conjugate f (y) = supx dom f (yT x − f(x))

• simplifies derivation of dual if conjugate of f0 is known

example: entropy maximization

n

n

X

X

f0(x) = xi log xi,

f0 (y) = eyi−1

i=1

i=1

Duality

5–8

The dual problem

Lagrange dual problem

maximize

g(λ, ν)

subject to

λ 0

finds best lower bound on p , obtained from Lagrange dual function

a convex optimization problem; optimal value denoted d

• λ, ν are dual feasible if λ 0, (λ, ν) dom g

• often simplified by making implicit constraint (λ, ν) dom g explicit

example: standard form LP and its dual (page 5–5)

minimize

cT x

maximize

−bT ν

subject to

Ax = b

subject to

AT ν + c 0

 

x 0

 

 

Duality

5–9

Weak and strong duality

weak duality: d ≤ p

always holds (for convex and nonconvex problems)

can be used to find nontrivial lower bounds for di cult problems for example, solving the SDP

maximize

−1T ν

subject to

W + diag(ν) 0

gives a lower bound for the two-way partitioning problem on page 5–7

strong duality: d = p

does not hold in general

(usually) holds for convex problems

conditions that guarantee strong duality in convex problems are called constraint qualifications

Duality

5–10

Slater’s constraint qualification

strong duality holds for a convex problem

minimize

f0(x)

subject to

fi(x) ≤ 0, i = 1, . . . , m

 

Ax = b

if it is strictly feasible, I.E.,

 

x int D : fi(x) < 0, i = 1, . . . , m, Ax = b

also guarantees that the dual optimum is attained (if p > −∞)

can be sharpened: E.G., can replace int D with relint D (interior relative to a ne hull); linear inequalities do not need to hold with strict inequality, . . .

there exist many other types of constraint qualifications

Duality

5–11

Inequality form LP

primal problem

 

 

 

cT x

 

 

 

 

minimize

 

 

 

 

subject to

Ax b

 

 

 

dual function

 

 

 

 

 

 

 

 

 

 

 

 

−∞

 

AT λ + c = 0

g(λ) = inf

(c + AT λ)T x

bT λ

=

bT

λ

 

 

otherwise

x

 

 

 

 

 

dual problem

maximize

−bT λ

subject to

AT λ + c = 0, λ 0

from Slater’s condition: p = d if Ax˜ b for some x˜

in fact, p = d except when primal and dual are infeasible

Duality

5–12

Quadratic program

primal problem (assume P S++n )

 

minimize

xT P x

subject to

Ax b

dual function

 

 

 

 

 

(Ax − b) = −4

 

 

g(λ) =

x

x

 

P x + λ

 

 

 

 

inf

 

T

 

T

1

λT AP −1AT λ

 

bT λ

 

 

 

 

 

 

 

 

dual problem

maximize

−(1/4)λT AP −1AT λ − bT λ

subject to

λ 0

from Slater’s condition: p = d if Ax˜ b for some x˜

in fact, p = d always

Duality

5–13

A nonconvex problem with strong duality

minimize

xT Ax + 2bT x

subject to

xT x ≤ 1

A 6 0, hence nonconvex

 

dual function: g(λ) = infx(xT (A + λI)x + 2bT x − λ)

unbounded below if A + λI 6 0 or if A + λI 0 and b 6 R(A + λI)

minimized by x = −(A + λI)b otherwise: g(λ) = −bT (A + λI)b − λ

dual problem and equivalent SDP:

maximize −bT (A + λI)b − λ subject to A + λI 0

b R(A + λI)

maximize

−t − λ

 

 

 

 

+ λI

b

0

subject to

A bT

t

strong duality although primal problem is not convex (not easy to show)

Duality

5–14