Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
GOS (1).docx
Скачиваний:
457
Добавлен:
15.05.2015
Размер:
5.51 Mб
Скачать

41. Электрические схемы вводных, вводно-распределительных устройств здания.

В современных жилых зданиях вводы внешних сетей и коммутационно-защитная аппаратура распределительных линий внутренних сетей объединяются в единое комплексное вводно-распределительное устройство (ВРУ), которое является и главным распределительным щитом.

Схема ввода зависит от схемы наружных питающих линий, этажности здания и требований к надежности, наличия лифтов и других силовых электроприемников, наличия встроенных предприятий и учреждений, величин электрических нагрузок. В зависимости от перечисленных условий здание получает питание по одному, двум, а иногда и большему числу вводов.

Типичные схемы вводов.

На рис. 1 показаны типичные схемы вводов: одиночный с рубильником и предохранителями (рис. 1,а), одиночный с автоматическим выключателем (рис. 1,б), одиночный с переключателем и предохранителями (рис. 1,в), двойной с переключателями и предохранителями (рис. 1, г), двойной с АВР для электроприемников первой категории надежности (рис. 1,д).

В настоящее время для повышения надежности электроснабжения противопожарных устройств и полного отключения электроприемников дома при пожаре применяется установка специального щита, присоединяемого к кабельным вводам до вводных переключателей. Такая схема применяется для домов высотой 16 этажей и более и показана на рис. 1,е.

Вводы, показанные на рис. 1, а и б, применяются для зданий до пяти этажей включительно без лифтов и других силовых потребителей. Ввод, показанный на рис. 1, в, может быть использован для домов до пяти этажей включительно. Эта схема обеспечивает возможность резервирования, однако при тупиковом вводе резервный кабель нормально не работает (холодный резерв), что является ее недостатком.

На рис. 1, г представлена схема двойного ввода в здание высотой от 6 до 16 этажей включительно с взаимным резервированием вводов. Для зданий выше 16 этажей применяется схема рис. 1, д, в которой питание лифтов, аварийного освещения и противопожарных устройств резервируется автоматически. Кабели, показанные штриховыми линиями, предназначены для питания смежных зданий при магистральной схеме электроснабжения. При тупиковых вводах эти кабели не нужны.

Рис. 1. Схема вводов: 1 — вентиляторы дымоудаления и приводы клапанов, 2 — аварийное освещение по путям эвакуации, 3 — цепи пожарной сигнализации.

42. Схемы питающей и распределительной сети напряжением до 1000 в.

Сети напряжением до 1000 В осуществляют распределение электроэнергии внутри промышленных предприятий и установок и непосредственное питание большинства приемников электроэнергии. Схема сети определяется технологическим процессом производства, взаимным расположением источника питания подстанций и приемников электроэнергии и их единичной установленной мощностью.

К сетям напряжением до 1000 В, как и ко всякой электрической сети, предъявляют следующие требования. Они должны: обеспечивать необходимую надежность электроснабжения; быть удобными, простыми и безопасными в эксплуатации; требовать минимальных приведенных затрат на сооружение и эксплуатацию.

Схемы электрических сетей бывают радиальными, магистральными и смешанными.

Рис. 6. Радиальные схемы сетей напряжением до 1000 В:

а — одноступенчатая; 6 — двухступенчатая; 1 — распределительный щит; 2— приемники электроэнергии; 3 — распределительный пункт

Радиальные схемы (рис. 6) характеризуются тем, что от, источника питания, например от распределительного щита 1, отходят линии, питающие непосредственно мощные приемники электроэнергии 2 или отдельные распределительные пункты 3, от которых по самостоятельным линиям питаются более мелкие приемники 2.

Примерами радиальных схем могут служить сети насосных или компрессорных станций, а также удовлетворять условиям окружающей среды; обеспечивать применение индустриальных методов монтажа.

При радиальных схемах используются изолированные провода и кабели.

Радиальные схемы обеспечивают высокую надежность питания отдельных потребителей, так как при аварии отключается только поврежденная линия. Все потребители могут потерять питание только при повреждении на сборных шинах.

Радиальные схемы позволяют легче решать задачи автоматизации. Однако сети, построенные по таким схемам, требуют больших капитальных вложений из-за значительного расхода проводов и кабелей, большого количества защитной и коммутационной аппаратуры и обладают худшими экономическими показателями.

Рис. 7. Магистральные схемы сетей напряжением до 1000 В:

а — с сосредоточенными нагрузками; 0 — трансформатор — магистраль; 1 — распределительный щит; 2 — распре делительный пункт; 3 — приемники электроэнергии сети взрыво- и пожароопасных помещений и установок.

Магистральные схемы (рис. 7, а) находят наибольшее применение при равномерном распределении нагрузки от распределительных щитов 1 и при питании приемников электроэнергии 3 одного технологического агрегата или одного технологического процесса. Магистрали выполняют кабелями, проводами, шинопроводами и присоединяют к распределительным щитам / подстанции или непосредственно к трансформатору при схеме трансформатор — магистраль (рис. 7, б).

Магистральная схема менее надежна, чем радиальная, поскольку при повреждении магистрали происходит отключение всех потребителей, присоединенных к ней. Применение резервирования по сети устраняет этот недостаток.

В отдельных случаях, когда требуется высокая степень надежности питания приемников электроэнергии, применяется двухстороннее питание магистральной линии.

В чистом виде радиальные и магистральные схемы применяются редко. Наибольшее распространение получили смешанные схемы (Рис.5, б), сочетающие в себе элементы магистральных и радиальных схем и позволяющие рациональнее использовать преимущества тех и других.

Для повышения надежности применяют схемы с взаимным резервированием, устройством перемычек между отдельными магистралями или соседними подстанциями при радиальном питании.

Рис. 5. Схемы электроснабжения производственных потребителей: б) – смешанная; ТП – трансформаторная подстанция; Т1, Т2 – трансформаторы двухтрансформаторной ТП

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]