Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
inf_otvety_1-21.docx
Скачиваний:
101
Добавлен:
11.05.2015
Размер:
1.14 Mб
Скачать

Представление в виде метода Рунге-Кутта

Формулу Симпсона можно представить в виде таблицы метода Рунге-Кутты следующим образом:

Составная формула (формула Котеса)

Для более точного вычисления интеграла, интервал разбивают на отрезков одинаковой длины и применяют формулу Симпсона на каждом из них. Значение исходного интеграла является суммой результатов интегрирования на всех отрезках.

где — величина шага, а — узлы интегрирования, границы элементарных отрезков, на которых применяется формула Симпсона. Обычно для равномерной сетки данную формулу записывают в других обозначениях (отрезок разбит на узлов) в виде

Также формулу можно записать используя только известные значения функции, т.е. значения в узлах:

где означает что индекс меняется от единицы с шагом, равным двум. Следует обратить внимание на удвоение коэффициента перед суммой. Это связано с тем, что в данном случае роль промежуточных узлов играют исходные узлы интегрирования.

Общая погрешность при интегрировании по отрезку с шагом (при этом, в частности, ) определяется по формуле[2]:

.

При невозможности оценить погрешность с помощью максимума четвёртой производной (например, на заданном отрезке она не существует, либо стремится к бесконечности), можно использовать более грубую оценку:

.

16. Численное интегрирование методом Гаусса-Лежандра. Эффективность данного алгоритма. Привести фрагмент программы, поясняющий данный алгоритм.

17. Численное интегрирование методом Монте-Карло. Эффективность данного алгоритма. Привести фрагмент программы, поясняющий данный алгоритм. Интегрирование методом Монте-Карло

Рисунок 2. Численное интегрирование функции детерминистическим методом

Предположим, необходимо взять интеграл от некоторой функции. Воспользуемся неформальным геометрическим описанием интеграла и будем понимать его как площадь под графиком этой функции.

Для определения этой площади можно воспользоваться одним из обычных численных методов интегрирования: разбить отрезок на подотрезки, подсчитать площадь под графиком функции на каждом из них и сложить. Предположим, что для функции, представленной на рисунке 2, достаточно разбиения на 25 отрезков и, следовательно, вычисления 25 значений функции. Представим теперь, мы имеем дело с -мерной функцией. Тогда нам необходимо отрезков и столько же вычислений значения функции. При размерности функции больше 10 задача становится огромной. Поскольку пространства большой размерности встречаются, в частности, в задачах теории струн, а также многих других физических задачах, где имеются системы со многими степенями свободы, необходимо иметь метод решения, вычислительная сложность которого бы не столь сильно зависела от размерности. Именно таким свойством обладает метод Монте-Карло.

Обычный алгоритм Монте-Карло интегрирования

Предположим, требуется вычислить определённый интеграл 

Рассмотрим случайную величину , равномерно распределённую на отрезке интегрирования . Тогда также будет случайной величиной, причём её математическое ожидание выражается как , где  — плотность распределения случайной величины , равная на участке .

Таким образом, искомый интеграл выражается как .

Но матожидание случайной величины можно легко оценить, смоделировав эту случайную величину и посчитав выборочное среднее.

Итак, бросаем точек, равномерно распределённых на , для каждой точки вычисляем . Затем вычисляем выборочное среднее: .

В итоге получаем оценку интеграла: 

Точность оценки зависит только от количества точек .

Этот метод имеет и геометрическую интерпретацию. Он очень похож на описанный выше детерминистический метод, с той разницей, что вместо равномерного разделения области интегрирования на маленькие интервалы и суммирования площадей получившихся «столбиков» мы забрасываем область интегрирования случайными точками, на каждой из которых строим такой же «столбик», определяя его ширину как , и суммируем их площади.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]