Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Аналоговая схемотехника_пос.DOC
Скачиваний:
102
Добавлен:
10.05.2015
Размер:
4.43 Mб
Скачать

15.5 Стабилизатор на операционном усилителе с ограничением выходного тока

Схема качественного стабилизатора, в котором управляющий транзистор заменен операционным усилителем, приведена на рис. 15.7. Питание ОУ осуществляется однополярным положительным напряжением Uвх (в данном случае не требуется получение на выходе ОУ отрицательных напряжений), что позволяет использовать стандартные операционные усилители в схемах стабилизаторов с выходным напряжением почти до 30 В.

Резистор R2 и транзистор VT2 образуют схему ограничения выходного тока. При номинальных токах нагрузки падение напряжения на R2 не превышает напряжения отпирания перехода база-эмиттер VT2, транзистор VT2 закрыт и не оказывает влияния на работу схемы стабилизатора. Операционный усилитель с дополнительным усилителем выходного тока VT1 включен по схеме неинвертирующего УПТ, откуда следует соотношение для расчета выходного напряжения

.

Если падение напряжения на R2 превысит величину, равную приближенно 0,6 В, транзистор VT2 откроется и предотвратит дальнейшее увеличение тока базы транзистора VT1. Таким образом, величина выходного тока стабилизатора ограничена уровнем .

Качественные показатели стабилизатора по схеме рис. 15.7 определяются следующими соотношениями:

а) коэффициент стабилизации (его можно повысить, если заменить R1 источником тока)

;

б) выходное сопротивление

,

где К – коэффициент усиления ОУ по напряжению;

rвых – выходное сопротивление ОУ;

в) температурный коэффициент напряжения

,

где – дрейф напряжения смещения ОУ;

–дрейф входного тока ОУ;

ТКНст – температурный коэффициент напряжения стабилитрона.

Все рассмотренные стабилизаторы эффективно подавляют нестабильность Uвх не только за счет медленных колебаний сетевого напряжения, но и пульсации Uвх после выпрямителя, выполняя роль электронного сглаживающего фильтра. Поэтому на входе стабилизатора допустим сравнительно высокий уровень пульсаций напряжения.

15.6 Микросхемы стабилизаторов постоянного напряжения

Стабилизаторы напряжения, подобные схеме рис. 15.7, выполняются в виде интегральных микросхем. Основные характеристики микросхем стабилизаторов напряжения серии К142 приведены в таблице 15.1. Среди них

–коэффициент нестабильности по напряжению;

–коэффициент нестабильности по току.

Таблица 15.1 – Характеристики микросхем стабилизаторов постоянного напряжения серии К142

К142

,

А

,

В

,

В

,

%/В

,

%

,

Вт

ЕН1Б

ЕН2Б

ЕН3,4

ЕН5А

ЕН6

ЕН8В

0,15

0,15

1

3

0,2

1,5

40

40

40

35

35

35

3–12

12–30

15–30

51%

15

15

0,1

0,1

0,05

0,05

0,001

0,05

0,2

0,2

0,5

3

0,2

1

0,8

0,8

4

10

4

Для стабилизаторов К142ЕН1 (2, 3, 4) требуется подключение внешних компонентов (делителя цепи обратной связи, элементов коррекции, защиты по току). Микросхемы К142ЕН5 (6, 8) являются функционально законченными стабилизаторами на фиксированные значения Uвых. Выходное напряжение микросхемы К142ЕН5 равно 5 В с возможным изменением этой величины в зависимости от экземпляра ИМС на ±0,2 В. Максимальный ток нагрузки 3 А. Минимальное входное напряжение 7,5 В. Тепловая защита выключает стабилизатор при температуре кристалла 175оС ± 10%, при превышении допустимого значения по току на (20–25)% срабатывает защита по току.

Существенным недостатком стабилизаторов параллельного и последовательного типов, называемых линейными, являются большая потеря мощности в регулирующем транзисторе (управляемом сопротивлении) и, как следствие этого, недостаточно высокий КПД. Стремление повысить КПД привело к созданию стабилизаторов с импульсным регулированием, в которых регулирующим элементом служит периодически замыкающийся ключ (как правило, транзистор в ключевом режиме), подключающий нагрузку к источнику входного постоянного напряжения Uвх. Если при периоде включения T ключ находится в замкнутом состоянии в течение времени tвкл, то постоянная составляющая напряжения на нагрузке Uвых = Uвх tвкл / T.

Регулирующий транзистор в импульсном стабилизаторе работает в ключевом режиме, т.е. большую часть времени находится либо в режиме отсечки, либо в режиме насыщения. Ключевые режимы работы транзистора и импульсные устройства будут рассмотрены при изучении дисциплины «Электронные цепи и микросхемотехника» [10].