Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsia_13.doc
Скачиваний:
28
Добавлен:
01.05.2015
Размер:
578.56 Кб
Скачать
  1. Частные производные. Касательная плоскость и нормаль к поверхности

Пусть задана функция . Так какх и у – независимые переменные, то одна из них может изменяться, а другая сохранять свое значение. Дадим независимой переменной х приращение , сохраняя значение

Аналогично получаем частное приращение z по у:

Полное приращение функцииопределяется равенством

.

Если существует предел

то он называется частной производной функции в точкепо переменнойх и обозначается одним из символов:

Частные производные по х в точке обычно обозначают символами.

Аналогично определяется и обозначается частная производная от по переменнойу.

Таким образом, частная производная функции нескольких (двух, трех и больше) переменных определяется как производная функции одной из этих переменных при условии постоянства значений остальных независимых переменных. Поэтому частные производные функции находят по формулам и правилам вычисления производных функции одной переменной (при этом соответственнох или у считается постоянной величиной).

Пример 2. Найти частные производные функции

Решение.

Графиком функции является некоторая поверхность.

График функции есть линия пересечения этой поверхности с плоскостьюИсходя из геометрического смысла производной для функции одной переменной заключаем, чтоугол между осьюи касательной, проведенной к кривой в точке(рис. 3). Аналогично

Рис. 3 Рис. 4

Рассмотрим одно из геометрических приложений частных производных функции двух переменных. Пусть функция дифференцируема в точкенекоторой областиРассечем поверхность, изображающую функциюz, плоскостями (рис. 4). Плоскостьпересекает поверхностьS по некоторой линии , уравнение которой получается подстановкой в выражение исходной функциивместочислаТочкапринадлежит кривой. В силу дифференцируемости функцииz в точке М0 функция также является дифференцируемой в точке. Следовательно, в этой точке в плоскостик кривойможет быть проведена касательная.

Проводя аналогичные рассуждения для сечения , построим касательнуюк кривойв точке. Прямыеопределяют плоскость, которая называетсякасательной плоскостью поверхности S в точке М0 .

Составим её уравнение. Так как плоскость проходит через точку , то её уравнение может быть записано в виде

которое можно переписать так:

, (1)

(разделив уравнение на –С и обозначив .

Найдем

Уравнения касательных имеют вид

,

соответственно.

Касательная лежит в плоскости, следовательно, координаты всех точекудовлетворяют уравнению (1). Этот факт можно записать в виде системы

Разрешая эту систему относительно , получим, что.

Проводя аналогичные рассуждения для касательной , легко установить, что.

Подставив значения в уравнение (1), получаем исходное уравнение касательной плоскости:

Прямая, проходящая через точку М0 и перпендикулярная касательной плоскости, построенной в этой точке поверхности, называется её нормалью.

Используя условие перпендикулярности прямой и плоскости легко получить канонические уравнения нормали:

.

Замечание. Формулы касательной плоскости и нормали к поверхности получены для обыкновенных, т. е. не особых, точек поверхности. Точка М0 поверхности называется особой, если в этой точке все частные производные равны нулю или хотя бы одна из них не существует. Такие точки мы не рассматриваем.

Пример 3. Написать уравнение касательной плоскости и нормали к параболоиду вращения в точке

Решение: Здесь Пользуясь приведенными выше формулами, получаем уравнение касательной плоскости:или

и уравнение нормали:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]