Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Метрология конспект.doc
Скачиваний:
121
Добавлен:
18.04.2015
Размер:
949.25 Кб
Скачать

Среднеквадратическое отклонение. Вероятность попадания среднего значения результата измерения в заданный интервал.

Величина среднего значения х, полученная в одной серии измерений, является случайным приближением к хи. Для оценки ее возможных отклонений от хи определяют опытное среднее квадратическое отклонение (CKO)

(3)

Формулы (2) и (3) соответствуют центральной предельной теореме теории вероятностей, согласно которой

(4)

Среднее арифметическое из ряда измерений всегда имеет меньшую погрешность, чем погрешность каждого определенного измерения. Это отражает и формула (4), определяющая фундаментальный закон теории погрешностей. Из него следует, что если необходимо повысить точность результата (при исключении систематической погрешности) в 2 раза, то число измерений нужно увеличить в 4 раза; если требуется увеличить точность в 3 раза, то число измерений увеличивают в 9 раз и т. д.

Нужно четко разграничивать применение формул (2) и (3): величина (3) используется при оценке погрешностей окончательного результата, а (2) — при оценке погрешности метода измерения.

До сих пор рассматривались оценки СКО по "необходимому" (достаточно большому) числу измерений. В этом случае σ2 называется генеральной дисперсией. При малом числе измерений (менее 10—20) получают так называемую выборочную дисперсию . Причем →σ2 лишь при n→∞. То есть если считать, что 2, то надежность оценки снижается с уменьшением n, а значения доверительной вероятности Р завышаются.

Поэтому при ограниченном числе измерений n вводят коэффициент Стьюдента tp, определяемый по специальным таблицам в зависимости от числа измерений и принятой доверительной вероятности Р.

Тогда средний результат измерений находится с заданной вероятностью Р в интервале и отличается от действительного значения на относительную величину .

Для уменьшения случайной погрешности есть два пути: повышение точности измерений (уменьшение σх) и увеличение числа измерений n с целью использования соотношения (2.4). Считая, что все возможности совершенствования техники измерений использованы, рассмотрим второй путь. При этом отметим, что уменьшать случайную составляющую погрешности целесообразно лишь до тех пор, пока общая погрешность измерений не будет полностью определяться систематической составляющей Δс. Если систематическая погрешность определяется классом точности СИ Δси (или γси), то необходимо, чтобы доверительный интервал был существенно меньше Δси.

Обычно принимают от Δ˚<Δс/2 до Δ˚<Δс/10 при Р=0,95. В случае невозможности выполнить эти соотношения необходимо коренным образом изменить методику измерения.

Методы суммирования погрешностей.

При нормировании точности технологического процесса или процесса измерения, а также при анализе действительной точности этих процессов возникает задача суммирования погрешностей, т.е. получение суммарной погрешности.

Возникает также задача разложения полученной в результате измерения суммарной погрешности на отдельные составляющие. Вторая задача является более сложной и не всегда имеет единственное, т. е. вполне определенное, решение.

Методы суммирования погрешностей различны в зависимости от вида погрешностей, т. е. в зависимости от того, являются ли погрешности величинами скалярными, векторными, постоянными или переменными, изменяющимися по экспоненциальному закону, убывающими, возрастающими или изменяющимися по периодическому закону.

Кроме того, следует различать, являются ли для данного процесса суммируемые погрешности случайными или систематическими.