Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Новый документ в формате RTF.rtf
Скачиваний:
24
Добавлен:
13.04.2015
Размер:
3.62 Mб
Скачать

9) Диэлектрические потери в жидких диэлектриках в газах и тв. Диэлектриках

Рассмотрим особенности диэлектрических потерь в диэлектриках разных видов. Низкие потери в газообразных диэлектриках обусловлены как малой электропроводностью (см. п.1.2.2.), так и малой поляризацией, даже в случае дипольных молекул, поскольку мало количество молекул в газе и мала вязкость газа.

Сравнительно низкие потери в полиэтилене обусловлены преимущественно поляризацией молекул и групп молекул полиэтилена. При этом потери происходят, в основном, за счет наличия примесей, их поляризации, движения незаряженных примесей и т.п.

Потери в жидких диэлектриках, типа трансформаторного масла, связаны с наличием слабополярных групп в молекулах (состав масла будет обсуждаться ниже, в гл.3) и наличием ионных примесей.

В сегнетоэлектриках потери высоки в области мегагерцовых частот, что обусловлено установлением доменной поляризации.

В сложных диэлектриках, для которых характерно наличие абсорбционного тока, максимум потерь наблюдается на частотах, период которых близок к характерному времени спада тока абсорбции.

Следует отметить, что диэлектрические потери в любых материалах зависят от температуры, частоты, влажности, напряженности поля. Частотная зависимость потерь является характеристикой материала и определяется для каждого диэлектрического материала не только свойствами молекул материала, но и наличием и составом примесей. Как правило, потери имеют максимум при одной или нескольких частотах, в зависимости от типа молекул. Положение максимумов характеризуется собственными частотами установления поляризации. Они могут быть связаны с поворотом полярных молекул в жидком диэлектрике или с поворотом домена в сегнетоэлектрике. Например для диэлектрика, соответствующего схеме рис.3б потери максимальны при частоте  м ~1 /  . Исследование частотного поведения потерь, т.н. диэлектрическая спектроскопия позволяет изучать структуру веществ.

Температурная зависимость потерь обычно имеет монотонный характер, потери растут с ростом температуры, хотя у некоторых дипольных диэлектриков наблюдаются локальные максимумы, имеющие ту же природу, что и максимумы в частотной зависимости.

С ростом влажности потери также растут, зачастую весьма значительно. Это связано, как с увеличением сквозной проводимости, так и с поляризацией растворенной и эмульгированной воды.

Увеличение напряженности поля сопровождается ростом tg , что объясняется ростом электропроводности. Причины этого будут подробно рассматриваться в следующем разделе.

10) Общая характеристика явления пробоя. Диэлектрик, находясь в электрическом поле, теряет свойства электроизоляционного материала, если напряжённость поля превысит некоторое критическое значение. Это явление носит название пробоя диэлектрика. Значение напряжения, при котором происходит пробой диэлектрика, называется пробивным напряжением Uпр, а соответствующее значение напряженности поля – электрической прочностью диэлектрикаEпр.

Основные виды пробоя следующие:

– электрический пробой;

– тепловой пробой;

– электрохимический пробой (электрическое старение).

Электрический пробой вызывается ударной ионизацией электронами, возникающей в сильном электрическом поле и приводящей к резкому возрастанию плотности электрического тока.

Тепловой пробой обусловлен прогрессивно нарастающим выделением теплоты в диэлектрике под действием диэлектрических потерь или электропроводности и приводящим к термическому разрушению диэлектрика.

Электрохимический пробой обусловлен медленными изменениями химического состава и структуры диэлектрика, которые развиваются под действием электрического поля или частичных разрядов в диэлектрике, приводя к необратимому уменьшению сопротивления изоляции и пробою её при напряжённостях значительно меньших, чем электрическая прочность диэлектрика. Этот процесс также называется электрическим старениемдиэлектрика.

Пробой газа. В газах возникает только электрический пробой. В воздушном промежутке вследствие радиоактивного и космического излучения всегда присутствует небольшое количество заряженных частиц. Электроны в электрическом поле разгоняются электрическим полем и приобретают дополнительную энергию:

W = g·Е·λ,

где g – заряд электрона, Е – напряженность поля, λ – средняя длина свободного пробега электрона до очередного соударения.

Если напряженность достаточна (то есть Е ≥ Епр), то возникает быстро нарастающий поток электронов, приводящий к пробою промежутка.

Пробивная напряжённость (Епр) газа зависит от многих факторов. Одним из важнейших факторов является вид поля. На рис.6. приведены зависимости пробивных напряжений от расстояния между электродами для трёх классических промежутков.

Электрическая прочность газа зависит также от плотности газа, которая является функцией давления и температуры.

Рис. 6. Зависимость электрической прочности газа от формы электродов и

расстояния между ними: 1– остриё-плоскость; 2 – остриё-остриё;

3 – шар-шар

Пробой жидких диэлектриков. Теория пробоя жидких диэлектриков не так хорошо разработана, как для газов. В жидких диэлектриках механизм пробоя и пробивное напряжение зависят от чистоты диэлектрика.

Различают три степени чистоты: