Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тема 1.Звёзды.doc
Скачиваний:
38
Добавлен:
31.03.2015
Размер:
821.76 Кб
Скачать

Эффективная температура звезд

В физике есть такое понятие – абсолютно чёрное тело. Абсолютно чёрным оно называется потому, что, по определению, поглощает всё падающее на него электромагнитное излучение. Теория утверждает, что полный световой поток (во всём диапазоне длин волн) с единицы поверхности абсолютно чёрного тела не зависит ни от его строения, ни от химического состава, а определяется только температурой. Согласно закону Стефана-Больцмана, светимость его пропорциональна четвёртой степени температуры. Абсолютно чёрное тело, как и идеальный газ, – это лишь физическая модель, никогда строго не реализующаяся на практике. Однако спектральный состав света звёзд в видимой области спектра довольно близок к «чернотельному». Поэтому можно считать, что модель абсолютно чёрного тела в целом, верно, описывает излучение реальной звезды.

Эффективной температурой звезды называется температура абсолютно чёрного тела, излучающего одинаковое с ней количество энергии с единицы поверхности. Она, вообще говоря, не равна температуре фотосферы звезды,и тем не менее это объективная характеристика, которую можно использовать для оценки других характеристик звезды: светимости, размеров и т. д.

В 10-е гг. XX столетия американский астроном Уолтер Адамс предпринял попытку определить эффективную температуру Сириуса В. Она составила 8000 К, а позднее выяснилось, что астроном ошибся и на самом деле она ещё выше (около 10 000 К). Следовательно, светимость этой звёздочки, если бы она имела размеры Солнца, должна была быть как минимум в 10 раз превосходить солнечную. Наблюдаемая же светимость Сириуса В, как мы знаем, в 400 раз меньше солнечной, т. е. она оказывается ниже ожидаемой более чем в 4 тыс. раз! Единственный выход из этого противоречия – считать, что Сириус В имеет гораздо меньшую площадь видимой поверхности, а значит, и меньший диаметр. Вычисления показали, что Сириус В по размеру всего лишь в 2,5 раза больше Земли. Но массу-то он сохраняет солнечную – выходит, его средняя плотность должна быть почти в 100 тыс. раз больше, чем у Солнца!

Диаграмма Герцшпрунга-Рассела

Классификации звезд начали строить сразу после того, как начали получать их спектры. По составу и силе этих линий, звезде присваивался тот или иной определённый класс. В конце XIX – начале XX в. в астрономию вошли фотографические методы количественных оценок видимого блеска (звёздных величин) звёзд и их цветовых характеристик (показателей цвета). Анализ этих параметров очень скоро привёл к открытию физической закономерности, связывающей наблюдаемые характеристики звезд

Первый шаг был сделан в 1905 – 1907 гг. датским астрономом Герцшпрунгом на основе фотометрических измерений ярких звёзд двух сравнительно близких звёздных скоплений – Плеяды и Гиады. Он обнаружил, что голубые звёзды в каждом скоплении имеют самую высокую яркость, а среди красных звёзд можно выделить слабые и сравнительно яркие. Иными словами, на диаграмме, где сопоставляются звёздная величина и цвет звёзд, звёзды разбиваются на отдельные группировки. Поскольку звёзды каждого скопления находятся от нас примерно на одинаковом расстоянии, видимая яркость, измеряемая в звёздных величинах, характеризует светимость звёзд. Следовательно, цвет и светимость звёзд каким-то образом соотносятся друг с другом.

Но цвет звезды зависит от её температуры (чем звезда горячее, тем она голубее), которая в свою очередь тесно связана с видом звёздного спектра, т. е. спектральным классом, определяемым непосредственно из наблюдений. В 1913 г. американский астроном Генри Ресселл сопоставил светимость различных звёзд с их спектральными классами. На диаграмму спектр-светимость он нанёс все звёзды с известными в то время расстояниями (не зная расстояния, невозможно оценить светимость звезды). С тех пор сходные по своему значению диаграммы цвет-светимость и температура-светимость часто называют диаграммами Герцшпрунга-Ресселл. Позже эта диаграмма оказалось ключом к пониманию и исследованиям процессов, происходящих внутри звезды.

На диаграмме Герцшпрунга-Ресселла звёзды образуют отдельные группировки, именуемые последовательностями. Самая густонаселённая из них – главная последовательность – включает в себя около 90% всех наблюдаемых звёзд (в том числе и наше Солнце). Она тянется по диагонали: от левого верхнего края диаграммы, где сосредоточены голубые горячие звёзды высокой светимости, вправо вниз — к области, занимаемой слабыми красными звёздами. Справа над нижней частью главной последовательности располагается ветвь гигантов, объединяющая преимущественно красные звёзды большого размера, светимость которых в десятки и сотни раз превосходит солнечную. Среди этих ярких звёзд на ветви гигантов – Арктур, Альдебаран, Дубхе. На самом верху диаграммы почти горизонтально через все спектральные классы проходит последовательность звёзд-сверхгигантов. К ней принадлежат, например, Полярная звезда, Ригель, Бетельгейзе. Красные сверхгиганты – это крупнейшие по размеру звезды. А внизу, в области высоких температур и низких светимостей, располагаются крошечные белые карлики. Известны и другие последовательности, но они не столь многочисленны.

Как только обнаружилось существование последовательностей, делались попытки их физической интерпретации. Сначала главная последовательность рассматривалась как совокупность звёзд различного возраста, т. е. как путь на диаграмме, по которому большинство звёзд перемешается в течение своей жизни, медленно расходуя запасы энергии и уменьшая светимость и температуру. Однако всё оказалось сложнее: вдоль главной последовательности располагаются звёзды различных масс, в которых энергия излучения выделяется за счёт превращения водорода в гелий. Чем массивнее звезда, тем выше её место на главной последовательности.

На главной последовательности любая звезда проводит большую часть своей жизни, именно поэтому на ней так много звезд. В это время потери энергии на излучения компенсируются за счёт энергии, выделяющейся в ходе ядерных реакции. Время жизни на главной последовательности определяется массой и долей элементов тяжелее гелия (металличностью).

Согласно теории звёздной эволюции, когда запасы водорода в недрах звезды заканчиваются, она покидает главною последовательность, отклоняясь вправо. При этом её температура всегда падает, а размер быстро возрастает. Начинается сложное, всё более ускоряющееся движение звезды по диаграмме.

Диаграмма Герцшпрунга-Ресселла широко применяется астрономами для описания эволюционных изменений звёзд и сопоставления теорий эволюции звёзд с наблюдениями. Удобна она и для определения возрастов звездных скоплений (на основании теории эволюции), так как с возрастом населённость различных последовательностей меняется. Так, в молодых скоплениях много звёзд высокой светимости на главной последовательности и последовательности сверхгигантов. В старых же скоплениях верхний конец главной последовательности «исчезает» (звёзды успевают сойти с неё), но зато очень многочисленна ветвь гигантов, куда попадают звёзды типа Солнца примерно через 10 млрд. лет после своего рождения.

Зависимость Герцшпрунга – Ресселла часто используется и для уточнения относительных расстояний до звёздных скоплений путём сопоставления положения их главных последовательностей на диаграммах спектр-звёздная величина.

Рис. 1. Диаграмма Герцщпрунга - Рассела