Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика ответы на биллеты.docx
Скачиваний:
11
Добавлен:
12.03.2015
Размер:
36.1 Кб
Скачать

6).Случайные величины. Закон и функции распределения дискретной случайной величины.

Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые заранее не могут быть учтены.

Дискретной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями.

Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями.

Закон распределения дискретной случайной величины можно задать таблично, в виде формулы (аналитически) и графически.

Каждая случайная величина полностью определяется своей функцией распределения.

Если x .- случайная величина, то функция F(x) = Fx (x) = P(x < x) называется функцией распределения случайной величины x . Здесь P(x < x) - вероятность того, что случайная величина x принимает значение, меньшее x.

Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением.

7).Числовые характеристики дискретной случайной величины.

Закон распределения полностью характеризует случайную величину. Однако часто построение закона или ряда распределения представляет весьма трудоемкую задачу, либо закон распределения неизвестен вовсе. На практике иногда бывает достаточно описать случайную величину «суммарно», указав ее отдельные числовые параметры, до некоторой степени характеризующие существенные черты распределения случайной величины. К таким параметрам можно отнести среднее значение, около которого группируются возможные значения случайной величины; число, характеризующее степень разбросанности значений случайной величины относительно среднего и др. Назначение таких характеристик – выразить компактно, в сжатой форме наиболее существенные особенности распределения. Все эти характеристики называются числовыми характеристиками случайной величины.

Так, для полной характеристики успеваемости учащегося и прогнозирования получения им оценки в будущем можно построить ряд распределения его оценок. Однако достаточно часто успеваемость характеризуется лишь одной, средней оценкой.

Числовые характеристики играют большую роль в теории вероятностей, поскольку, оперируя ими, можно значительно упростить ряд практических вероятностных задач и получить важные результаты. Например, в тех случаях, когда на численный результат эксперимента оказывают влияние отдельные случайные величины и их достаточно много, то закон распределения результирующей случайной величины, оказывается, не будет зависеть от законов распределения составляющих величин. В этих случаях для анализа результирующей величины необходимо лишь знать некоторые числовые характеристики отдельных случайных величин.

8).Непрерывные случайные величины. Функции распределения и плотность распределения непрерывной случайной.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Очевидно, число возможных значений непрерывной случайной величины бесконечно.

Свойства функции распределения

Свойство 1. Значения функции распределения принадлежат отрезку [О, 1]:

0 F (х) 1.

Доказательство. Свойство вытекает из определения функции распределения как вероятности: вероятность всегда есть неотрицательное число, не превышающее единицы.

Свойство 2. F (х)--неубывающая функция, т. е.

F (x2) F (х1), если х2 > х1.

Доказательство. Пусть х2 > х1. Событие, состоящее в том, что X примет значение, меньшее х2, можно подразделить на следующие два несовместных события: 1) X примет значение, меньшее х1, с вероятностью Р (X < x1); 2) X примет значение, удовлетворяющее неравенству x1Xx2, с вероятностью Р (x1Xx2). По теореме сложения имеем

Р (X < х2) = Р (X < х1) + Р (x1Xx2).

Отсюда

Р (X < х2) - Р (X < х1)= Р (x1Xx2),

или

F (x2)--F (x1) = Р (x1Xx2).

Так как любая вероятность есть число неотрицательное, то F(x2) -- F(x1)0, или F (x2) F (x1), что и требовалось доказать.

Следствие 1. Вероятность того, что случайная величина примет значение, заключенное в интервале (а, b), равна приращению функции распределения на этом интервале:

P(aX<b)=F(b)--F(a).

Это важное следствие вытекает из формулы, если положить х2=b и х1= а.

Следствие 2. Вероятность того, что непрерывная случайная величина X примет одно определенное значение, равна нулю.

Действительно, положив в формуле а = х1, b = х1+, имеем

P(х1 X<х1+)=F(х1+)-F(х1).

Устремим к нулю. Так как X -- непрерывная случайная величина, то функция F (х) непрерывна. В силу непрерывности F (х) в точке х1 разность F (х1+)-- F (x1) также стремится к нулю; следовательно, Р (X =х1) = 0. Используя это положение, легко убедиться в справедливости равенств

Р (а X < b) = Р (а < X < b) = Р(а<Хb) = Р(аХb). (***)

Например, равенство Р(а<Хb) = Р (а < X < b) доказывается так:

Р(а<Хb) = Р (а < X < b)+P(X=b)= Р(а<Х<b).

Таким образом, не представляет интереса говорить о вероятности того, что непрерывная случайная величина примет одно определенное значение, но имеет смысл рассматривать вероятность попадания ее в интервал, пусть даже сколь угодно малый. Этот факт полностью соответствует требованиям практических задач. Например, интересуются вероятностью того, что размеры деталей не выходят за дозволенные границы, но не ставят вопроса о вероятности их совпадения с проектным размером.

Заметим, что было бы неправильным думать, что равенство нулю вероятности Р (X =х1) означает, что событие Х=х1 невозможно (если, конечно, не ограничиваться классическим определением вероятности). Действительно, в результате испытания случайная величина обязательно примет одно из возможных значений; в частности, это значение может оказаться равным х1.

Свойство 3. Если возможные значения случайной величины принадлежат интервалу (а, b), то: 1) F(x) = 0 при х а; 2) F(x)=1 при х b.

Доказательство. 1) Пусть x1 a. Тогда событие X < х1 невозможно (так как значений, меньших х1, величина X по условию не принимает) и, следовательно, вероятность его равна нулю.

2) Пусть х2 b. Тогда событие X < х2 достоверно (так как все возможные значения X меньше х2) и, следовательно, вероятность его равна единице.

Свойства плотности распределения

Свойство 1. Плотность распределения--неотрицательная функция:

f(x) 0.

Доказательство. Функция распределения -- неубывающая функция, следовательно, ее производная F'(х)=f(х)--функция неотрицательная.

Геометрически это свойство означает, что точки, принадлежащие графику плотности распределения, расположены либо над осью Ох, либо на этой оси.

График плотности распределения называют кривой распределения.

Свойство 2. Несобственный интеграл от плотности распределения в пределах от - до равен единице:

Доказательство. Несобственный интеграл выражает вероятность события, состоящего в том, что случайная величина примет значение, принадлежащее интервалу (-,). Очевидно, такое событие достоверно, следовательно, вероятность его равна единице.

Геометрически это означает, что вся площадь криволинейной трапеции, ограниченной осью Ох и кривом распределения, равна единице.