Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
42-50.docx
Скачиваний:
9
Добавлен:
11.03.2015
Размер:
241.19 Кб
Скачать

Функции одной переменной] График функции (чёрная кривая) и касательная прямая (красная прямая) Функция и её производная.

График функции Вейерштрасса на интервале [−2, 2]. Этот график имеетфрактальный характер: зум (в красном круге) подобен всему графику.

Функция  одной переменной является дифференцируемой в точке  своей области определения , если существует такая константа , что для любой точки  верно

при этом число  неизбежно равно производной

Функция одной переменной является дифференцируемой в точке  тогда и только тогда, когда она имеет производную в этой точке.

График функции  представляет собой кривую на плоскости , а график линейной функции

доставляет касательную прямую к этой кривой, проведённую в точке .

Напр., функция  определена и дифференцируема в любой вещественной точке, поскольку её можно представить в виде

.

При этом её производная есть , а уравнение касательной прямой, проведённой в точке , имеет вид: .

Элементарные функции могут быть непрерывны в некоторой точке, но не быть в ней дифференцируемы. Напр., функция  является непрерывной на всей вещественной оси, но её производная испытывает скачок при переходе через точку , в котором эта функция не является дифференцируемой. В этой точке нельзя провести и касательную к графику функции. Функция  тоже непрерывна на всей вещественной оси и её график имеет касательные во всех точках, однако касательная, проведённая в точке , является вертикальной прямой и поэтому производная функции бесконечно велика в точке , а сама функция не дифференцируема в этой точке.

Графики элементарных функций учат, что произвольная функция дифференцируема всюду, за исключением исключительных и изолированных значений аргумента. Первая попытка аналитического доказательства этого утверждения принадлежит Амперу[4], и поэтому оно носит название гипотезы Ампера. Это утверждение, однако, не верно в классе аналитически представимых функций, напр., функция Дирихле не является даже непрерывной ни в одной точке[5]. Нельзя также считать и произвольную непрерывную функцию дифференцируемой, напр., функция Вейерштрасса определена и непрерывная на всей вещественной оси, но не является дифференцируемой ни в одной её точке[6]. Это в частности означает, что к её графику ни в одной точке нельзя провести касательную прямую. Тем не менее, гипотезу Ампера можно рассматривать как нестрогую формулировку следующей теоремы Лебега: любая монотонная функция  имеет определённую конечную производную всюду, кроме, быть может, некоторого множества значений  меры нуль.[7]

Функции нескольких переменных

Функция  переменных  является дифференцируемой в точке  своей области определения , если для любой точки  существуют такие константы , что

где .В этой записи функция

является дифференциалом функции  в точке , а числа  являются частными производными функции  в точке , то есть

где  — вектор, все компоненты которого, кроме -ой, равны нулю, а -ая компонента равна 1.

Каждая дифференцируемая в точке функция имеет в этой точке все частные производные, но не каждая функция, имеющая все частные производные, является дифференцируемой. Более того, существование частных производных в некоторой точке не гарантирует даже непрерывность функции в этой точке. В качестве такого примера можно рассмотреть функцию двух переменных , равную  при  и  при . В начале координат обе частные производные существуют (равны нулю), но функция не является непрерывной.

Это обстоятельство могло бы стать серьезной помехой всему дифференциальному исчислению функций многих переменных, если бы не выяснилось, что непрерывности частных производных в точке достаточно для дифференцируемости функции в этой точке.[1]

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]