Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Цилькер Б.Я., Орлов С.А. Организация ЭВМ и систем

.pdf
Скачиваний:
2022
Добавлен:
02.05.2014
Размер:
22.66 Mб
Скачать

218Глава 5. Память

Врежиме запаздывающей записи данные, которые должны быть занесены

вячейку, выставляются на шину лишь в следующем тактовом периоде. При этом данные, которые считываются из ячейки А1 в третьем такте, находятся в активном состоянии на протяжении всего тактового периода и могут быть беспрепятствен­ но считаны в то время, когда выставляется адрес A3. Сами данные для записи пере­ даются в четвертом такте, где в режиме стандартной записи имеет место холостой цикл. Как следствие, здесь за те же четыре такта считано содержимое двух ячеек (АО и А1) и записаны данные по адресу A3.

Как видно из вышеизложенного, в обоих случаях адрес А2 игнорируется. Ре­ ально никакой потери адресов и данных не происходит. Контроллер памяти не­ посредственно перед переключением из режима чтения в режим записи просто не передает адрес на шину, так как «знает», какой тип памяти используется и сколько тактов ожидания нужно ввести перед переходом «чтение/запись» и обратно.

Компания IDT (Integrated Device Technology) в развитие идеи записи с запаз­ дыванием предложила новую технологию, получившую название ZBT SRAM (Zero Bus Turnaround) — нулевое время переключения шины. Идея ее состоит в том, чтобы запись с запаздыванием производить с таким же интервалом, какой требу­ ется для чтения. Так, если SRAM с конвейерным чтением требует три тактовых периода для чтения данных из ячейки, то данные для записи нужно передавать с таким же промедлением относительно адреса. В результате перекрывающиеся циклы чтения и записи идут один за другим, позволяя выполнять операции чте­ ния/записи в каждом такте без каких-либо задержек1.

Динамические оперативные запоминающие устройства

Динамической памяти в вычислительной машине значительно больше, чем стати­ ческой, поскольку именно DRAM используется в качестве основной памяти ВМ. Как и SRAM, динамическая память состоит из ядра (массива ЗЭ) и интерфейсной логики (буферных регистров, усилителей чтения данных, схемы регенерации и др.). Хотя количество видов DRAM уже превысило два десятка, ядро у них организова­ но практически одинаково. Главные различия связаны с интерфейсной логикой, причем различия эти обусловлены также и областью применения микросхем - помимо основной памяти ВМ, ИМС динамической памяти входят, например, в состав видеоадаптеров. Классификация микросхем динамической памяти пока­ зана на рис. 5.10.

Чтобы оценить различия между видами DRAM, предварительно остановимся на алгоритме работы с динамической памятью. Для этого воспользуемся рис. 5.6.

В отличие от SRAM адрес ячейки DRAM передается в микросхему за два шага - Вначале адрес столбца, а затем строки, что позволяет сократить количество выво­ дов шины адреса примерно вдвое, уменьшить размеры корпуса и разместить на материнской плате большее количество микросхем. Это, разумеется, приводит к снижению быстродействия, так как для передачи адреса нужно вдвое больше вре­ мени. Для указания, какая именно часть адреса передается в определенный момент, служат два вспомогательных сигнала RAS и CAS. При обращении к ячейке памя­ ти на шину адреса выставляется адрес строки. После стабилизации процессов на

Сходную с ZBT SRAM технологию предложила также фирма Cypress Semiconductor. Эта технология получила название NoBL SRAM (No Bus Latency - дословно «нет задержек шины»).

220 Глава 5. Память

полняется автоматически интерфейсной логикой микросхемы, и происходит это сразу же после считывания строки.

Теперь рассмотрим различные типы микросхем динамической памяти, начнем с системных DRAM, то есть микросхем, предназначенных для использования в ка­ честве основной памяти. На начальном этапе это были микросхемы асинхронной памяти, работа которых не привязана жестко к тактовым импульсам системной шины.

Асинхронные динамические ОЗУ. Микросхемы асинхронных динамических ОЗУ управляются сигналами RAS и СAS, и их работа в принципе не связана непосред­ ственно тактовыми импульсами шины. Асинхронной памяти свойственны допол­ нительные затраты времени на взаимодействие микросхем памяти и контроллера. Так, в асинхронной схеме сигнал RAS будет сформирован только после поступле­ ния в контроллер тактирующего импульса и будет воспринят микросхемой памя­ ти через некоторое время. После этого память выдаст данные, но контроллер смо­ жет их считать только по приходу следующего тактирующего импульса, так как он должен работать синхронно с остальными устройствами ВМ. Таким образом, на протяжении цикла чтения/записи происходят небольшие задержки из-за ожида­ ния памятью контроллера и контроллером памяти.

Микросхемы DRAM.. В первых микросхемах динамической памяти применялся наиболее простой способ обмена данными, часто называемый традиционным (con­ ventional). Он позволял считывать и записывать строку памяти только на каждый пятый такт (рис. 5.11, а). Этапы такой процедуры были описаны ранее. Традици­ онной DRAM соответствует формула 5-5-5-5. Микросхемы данного типа могли работать на частотах до 40 МГц и из-за своей медлительности (время доступа со­ ставляло около 120 нс) просуществовали недолго.

Микросхемы FPM DRAM. Микросхемы динамического ОЗУ, реализующие ре­ жим FPM, также относятся к ранним типам DRAM. Сущность режима была пока­ зана ранее. Схема чтения для FPM DRAM (рис. 5.11, б) описывается формулой 5-3-3-3 (всего 14 тактов). Применение схемы быстрого страничного доступа по­ зволило сократить время доступа до 60 нс, что, с учетом возможности работать на более высоких частотах шины, привело к увеличению производительности памя­ ти по сравнению с традиционной DRAM приблизительно на 70%. Данный тип микросхем применялся в персональных компьютерах примерно до 1994 года.

Микросхемы EDO DRAM. Следующим этапом в развитии динамических ОЗУ стали ИМС с гиперстраничным режимом доступа (НРМ, Hyper Page Mode), более известные как EDO (Extended Data Output — расширенное время удержания данных на выходе). Главная особенность технологии — увеличенное по сравне­ нию с FPM DRAM время доступности данных на выходе микросхемы. В микро­ схемах FPM DRAM выходные данные остаются действительными только при ак­ тивном сигнале СAS, из-за чего во втором и последующих доступах к строке нужно три такта: такт переключения СAS в активное состояние, такт считывания данных и такт переключения CAS в неактивное состояние. В EDO DRAM по активному (спадающему) фронту сигнала CAS данные запоминаются во внутреннем регистре, где хранятся еще некоторое время после того, как поступит следующий активный фронт сигнала. Это позволяет использовать хранимые данные, когда CAS уже пе-

Основная память 22 3

банка с подготовкой к следующей операции в остальных банках (перезарядкой управляющих цепей и восстановлением информации). Возможность держать открытыми одновременно несколько строк памяти (из разных банков) также спо­ собствует повышению быстродействия памяти. При поочередном доступе к бан­ кам частота обращения к каждому из них в отдельности уменьшается пропор­ ционально числу банков и SDRAM может работать на более высоких частотах. Благодаря встроенному счетчику адресов SDRAM, как и BEDO DRAM, позволя­ ет производить чтение и запись в пакетном режиме, причем в SDRAM длина паке­ та варьируется и в пакетном режиме есть возможность чтения целой строки памя­ ти. ИМС может быть охарактеризована формулой 5-1-1-1. Несмотря на то, что формула для этого типа динамической памяти такая же, что и у BEDО, способ­ ность работать на более высоких частотах приводит к тому, что SDRAM с двумя банками при тактовой частоте шины 100 МГц по производительности может по­ чти вдвое превосходить память типа BEDO.

Микросхемы DDR SDRAM. Важным этапом в дальнейшем развитии техноло­ гии SDRAM стала DDR SDRAM (Double Data Rate SDRAM - SDRAM с удвоен­ ной скоростью передачи данных). В отличие от SDRAM новая модификация вы­ дает данные в пакетном режиме по обоим фронтам импульса синхронизации, за счет чего пропускная способность возрастает вдвое. Существует несколько специ­ фикаций DDR SDRAM, в зависимости от тактовой частоты системной шины: DDR266, DDR333, DDR400, DDR533. Так, пиковая пропускная способность мик­ росхемы памяти спецификации DDR333 составляет 2,7 Гбайт/с, а для DDR400 - 3,2 Гбайт/с. DDR SDRAM в настоящее время является наиболее распространен­ ным типом динамической памяти персональных ВМ.

Микросхемы RDRAM, DRDRAM. Наиболее очевидные способы повышения эффективности работы процессора с памятью - увеличение тактовой частоты шины либо ширины выборки (количества одновременно пересылаемых разрядов). К сожалению, попытки совмещения обоих вариантов наталкиваются на существен­ ные технические трудности (с повышением частоты усугубляются проблемы элек­ тромагнитной совместимости, труднее становится обеспечить одновременность поступления потребителю всех параллельно пересылаемых битов информации). В большинстве синхронных DRAM (SDRAM, DDR) применяется широкая вы­ борка (64 бита) при ограниченной частоте шины.

Принципиально отличный подход к построению DRAM был предложен ком­ панией Rambus в 1997 году. В нем упор сделан на повышение тактовой частоты до 400 МГц при одновременном уменьшении ширины выборки до 16 бит. Новая па­ мять известна как RDRAM (Rambus Direct RAM). Существует несколько разно­ видностей этой технологии: Base, Concurrent и Direct. Во всех тактирование ведется по обоим фронтам синхросигналов (как в DDR), благодаря чему результирующая частота составляет соответственно 500-600, 600-700 и 800 МГц. Два первых ва­ рианта практически идентичны, а вот изменения в технологии Direct Rambus (DRDRAM) весьма значительны.

Сначала остановимся на принципиальных моментах технологии RDRAM, ори­ ентируясь в основном на более современный вариант - DRDRAM. Главным от­ личием от других типов DRAM является оригинальная система обмена данными между ядром и контроллером памяти, в основе которой лежит так называемый

2 2 4 Глава 5. Память

«канал Rambus», применяющий асинхронный блочно-ориентированный протокол. На логическом уровне информация между контроллером и памятью передается пакетами.

Различают три вида пакетов: пакеты данных, пакеты строк и пакеты столбцов. Пакеты строк и столбцов служат для передачи от контроллера памяти команд уп­ равления соответственно линиями строк и столбцов массива запоминающих эле­ ментов. Эти команды заменяют обычную систему управления микросхемой с по­ мощью сигналов RAS, CAS, WE и CS.

Массив ЗЭ разбит на банки. Их число в кристалле емкостью 64 Мбит составля­ ет 8 независимых или 16 сдвоенных банков. В сдвоенных банках пара банков ис­ пользует общие усилители чтения/записи. Внутреннее ядро микросхемы имеет 128-разрядную шину данных, что позволяет по каждому адресу столбца переда­ вать 16 байт. При записи можно использовать маску, в которой каждый бит соот­ ветствует одному байту пакета. С помощью маски можно указать, сколько байтов пакета и какие именно должны быть записаны в память.

Линии данных, строк и столбцов в канале полностью независимы, поэтому ко­ манды строк, команды столбцов и данные могут передаваться одновременно, при­ чем для разных банков микросхемы. Пакеты столбцов включают в себя по два поля и передаются по пяти линиям. Первое поле задает основную операцию записи или чтения. Во втором поле находится либо указание на использование маски записи (собственно маска передается по линиям данных), либо расширенный код опера­ ции, определяющий вариант для основной операции. Пакеты строк подразделя­ ются на пакеты активации, отмены, регенерации и команды переключения режи­ мов энергопотребления. Для передачи пакетов строк выделены три линии.

Операция записи может следовать сразу за чтением — нужна лишь задержка на время прохождения сигнала по каналу (от 2,5 до 30 нс в зависимости от длины канала). Чтобы выровнять задержки в передаче отдельных битов передаваемого кода, проводники на плате должны располагаться строго параллельно, иметь оди­ наковую длину, (длина линий не должна превышать 12 см) и отвечать строгим тре­ бованиям, определенным разработчиком.

Каждая запись в канале может быть конвейеризирована, причем время задерж­ ки первого пакета данных составляет 50 нс, а остальные операции чтения/записи осуществляются непрерывно (задержка вносится только при смене операции с за­ писи на чтение, и наоборот).

В имеющихся публикациях упоминается работа Intel и Rambus над новой вер­ сией RDRAM, названной nDRAM, которая будет поддерживать передачу данных с частотами до 1600 МГц.

Микросхемы SLDRAM. Потенциальным конкурентом RDRAM на роль стандарта архитектуры памяти для будущих персональных ВМ выступает новый вид ди­ намического ОЗУ, разработанный консорциумом производителей ВМ SyncLink Consortium и известный под аббревиатурой SLDRAM. В отличие от RDRAM, тех­ нология которой является собственностью компаний Rambus и Intel, данный стан­ дарт — открытый. На системном уровне технологии очень похожи. Данные и ко­ манды от контроллера к памяти и обратно в SLDRAM передаются пакетами по 4 или 8 посылок. Команды, адрес и управляющие сигналы посылаются по однонап­ равленной 10-разрядной командной шине. Считываемые и записываемые данные

Основная память 2 2 5

передаются по двунаправленной 18-разрядной шине данных. Обе шины работают на одинаковой частоте. Пока что еще эта частота равна 200 МГц, что, благодаря технике DDR, эквивалентно 400 МГц. Следующие поколения SLDRAM должны работать на частотах 400 МГц и выше, то есть обеспечивать эффективную частоту более 800 МГц.

К одному контроллеру можно подключить до 8 микросхем памяти. Чтобы из­ бежать запаздывания сигналов от микросхем, более удаленных от контроллера, временные характеристики для каждой микросхемы определяются и заносятся в ее управляющий регистр при включении питания.

Микросхемы ESDRAM. Это синхронная версия EDRAM, в которой использу­ ются те же приемы сокращения времени доступа. Операция записи в отличие от чтения происходит в обход кэш-памяти, что увеличивает производительность ESDRAM при возобновлении чтения из строки, уже находящейся в кэш-памяти. Благодаря наличию в микросхеме двух банков простои из-за подготовки к опера­ циям чтения/записи сводятся к минимуму. Недостатки у рассматриваемой мик­ росхемы те же, что и у EDRAM — усложнение контроллера, так как он должен учитывать возможность подготовки к чтению в кэш-память новой строки ядра. Кроме того, при произвольной последовательности адресов кэш-память задействуется неэффективно.

Микросхемы CDRAM. Данный тип ОЗУ разработан в корпорации Mitsubishi, и его можно рассматривать как пересмотренный вариант ESDRAM, свободный от некоторых ее несовершенств. Изменены емкость кэш-памяти и принцип размеще­ ния в ней данных. Емкость одного блока, помещаемого в кэш-память, уменьшена до 128 бит, таким образом, в 16-килобитовом кэше можно одновременно хранить копии из 128 участков памяти, что позволяет эффективнее использовать кэш-па­ мять. Замена первого помещенного в кэш участка памяти начинается только после заполнения последнего (128-го) блока. Изменению подверглись и средства доступа. Так, в микросхеме используются раздельные адресные шины для статического кэша и динамического ядра. Перенос данных из динамического ядра в кэш-память со­ вмещен с выдачей данных на шину, поэтому частые, но короткие пересылки не снижают производительности ИМС при считывании из памяти больших объе­ мов информации и уравнивают CDRAM с ESDRAM, а при чтении по выбо­ рочным адресам CDRAM явно выигрывает. Необходимо, однако, отметить, что вышеперечисленные изменения привели к еще большему усложнению кон­ троллера памяти.

Постоянные запоминающие устройства

Слово «постоянные» в названии этого вида запоминающих устройств относится к их свойству хранить информацию при отсутствии питающего напряжения. Мик­ росхемы ПЗУ также построены по принципу матричной структуры накопителя, где в узлах расположены перемычки в виде проводников, полупроводниковых диодов или транзисторов, одним концом подключенные к адресной линии, а дру­ гим — к разрядной линии считывания. В такой матрице наличие перемычки мо­ жет означать 1, а ее отсутствие — 0. В некоторых типах ПЗУ элемент, расположен­ ный на перемычке, исполняет роль конденсатора. Тогда заряженное состояние конденсатора означает. 1, а разряженное — 0.