Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекции по информатике

.pdf
Скачиваний:
41
Добавлен:
01.05.2014
Размер:
516.72 Кб
Скачать

Лекции по информатике

Автор: Смирнов Михаил Станиславович,

заведующий учебно-вычислительной лабораторией

кафедры строительной механики и теории упругости Санкт-Петербургского государственного политехнического университета

ЛЕКЦИЯ 1

Данный курс лекций по информатике разработан кафедрой строительной механики и теории упругости Санкт-Петербургского Государственного Технического Университета для студентов, готовящихся к сдаче тестов по основам информатики. Эти материалы разрешается копировать и распространять, но запрещается использовать в коммерческих целях. При обнаружении в тексте ошибок и неточностей просьба сообщать Смирнову М.С. (e-mail: missmi@mail.ru)

1. ИНФОРМАЦИЯ И ЕЕ РОЛЬ В СОВРЕМЕННОМ ОБЩЕСТВЕ.

ИНФОРМАТИКАНАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ. ИНФОРМАЦИЯНАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ.

Например, этот или любой другой текст, имеющий определенный смысл, состоит из набора символовбукв, знаков препинания, цифр, которые объединяются в слова, те в свою очередь - в предложения и далее - в абзацы. Человек, чтобы сообщить что-либо собеседнику произносит определенные фразыто есть издает звуковые сигналы. Изображение на знаке дорожного движения доводит до водителя автомобиля определенную информацию, например об имеющейся впереди опасности.

ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ) ИЛИ КОМПЬЮТЕР (англ. computer- -вычислитель)-УСТРОЙСТВО ДЛЯ АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ ИНФОРМАЦИИ. Принципиальное отличие использования ЭВМ от всех других способов обработки информации заключается в способности выполнения определенных операций без непосредственного участия человека, но по заранее составленной им программе. Информация в современном мире приравнивается по своему значению для развития общества или страны к важнейшим ресурсам наряду с сырьем и энергией. Еще в 1971 году президент Академии наук США Ф.Хандлер говорил: "Наша экономика основана не на естественных ресурсах, а на умах и применении научного знания".

В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют нашу эпоху постиндустриальной. В 1983 году американский сенатор Г.Харт охарактеризовал этот процесс так: "Мы переходим от экономики, основанной на тяжелой промышленности, к зкономике, которая все больше ориентируется на информацию, новейшую технику и технологию, средства связи и услуги."

2. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.

Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны. В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.

Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройствтранзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.

В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к сниижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).

История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная америкнская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.

СОВРЕМЕННЫЕ ЭВМ - ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.

90-ые годы ХХ-го века ознаменовались бурным развитием компьютерных сетей, охватывающих весь мир. Именно к началу 90-ых количество подключенных к ним компьютеров достигло такого большого значения, что объем ресурсов доступных пользователям сетей привел к переходу ЭВМ в новое качество. Компьютеры стали инструментом для принципиально нового способа общения людей через сети, обеспечивающего практически неограниченный доступ к информации, находящейся на огромном множестве ЭВМ во всем мире - "глобальной информационной среде обитания".

3. ОСНОВНЫЕ ФУНКЦИОНАЛЬНЫЕ ЧАСТИ ЭВМ.

ОСНОВНЫЕ ПРИНЦИПЫ УСТРОЙСТВА ЭВМ БЫЛИ ПРЕДЛОЖЕНЫ ДЖОНОМ ФОН НЕЙМАНОМ - выдающимся американским математиком венгерского происхождения в 1945 году. В соответствии с ними в любой ЭВМ должны иметься четыре основных функциональных части. Взаимодействие между ними можно упрощенно изобразить в виде схемы:

На схеме двойные стрелки соответствуют движению данных (информация в ЭВМ называется данными). Человек вводит данные в компьютер через устройства вводавывода, эти данные могут храниться в устройствах хранения информации и обрабатываться в устройствах обработки информации. Полученные результаты также могут запоминаться в устройствах хранения информации и выдаваться человеку с помощью устройств ввода-вывода. Управляющие устройства управляют всем этим процессом, что изображено на схеме одинарными стрелками.

Так, в общих чертах, работают все ЭВМ, начиная с простейших калькуляторов и кончая суперкомпьютерами.

ЛЕКЦИЯ 2

4. УСТРОЙСТВА ХРАНЕНИЯ ИНФОРМАЦИИ.

Различают устройства хранения информации, реализованные в виде электронных схем, и накопители информации, при помощи которых данные записываются на какой-либо носитель, например магнитный или оптический (ранее использовались даже бумажные носителиперфокарты и перфоленты). Устройства, представляющие собой электронные схемы, отличаются небольшим временем доступа к данным, но не позволяют хранить большие объемы информации. Накопители информации наоборот дают возможность хранить большие объемы информации, но время ее записи и считывания там велико. Поэтому эффективная работа на компьютере возможна только при совместном использовании накопителей информации и устройств хранения, реализованных в виде электронных схем.

ОПЕРАТИВНАЯ ПАМЯТЬ ПРЕДНАЗНАЧЕНА ДЛЯ ХРАНЕНИЯ ИСПОЛНЯЕМЫХ В ДАННЫЙ МОМЕНТ ПРОГРАММ И НЕОБХОДИМЫХ ДЛЯ ЭТОГО ДАННЫХ. Иными словами, в ОЗУ хранится информация, с которой ведется работа в данный момент времени.

ПОСТОЯННОЕ ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО ПРЕДНАЗНАЧЕНО ДЛЯ ХРАНЕНИЯ НЕИЗМЕНЯЕМОЙ ИНФОРМАЦИИ. В компьютере постоянно должна храниться информация, которая нужна при каждом его включении. Например, в ПЗУ записываются команды, которые компьютер должен выполнить сразу после включения питания для начала работы. СОДЕРЖИМОЕ ОПЕРАТИВНОЙ ПАМЯТИ ПРОПАДАЕТ ПРИ ВЫКЛЮЧЕНИИ ПИТАНИЯ, СОДЕРЖИМОЕ ПЗУ ПРИ ВЫКЛЮЧЕНИИ ПИТАНИЯ СОХРАНЯЕТСЯ. Поэтому ПЗУ иногда называют энергонезависимой памятью.

ГИБКИЕ МАГНИТНЫЕ ДИСКИ (ДИСКЕТЫ) ПРЕДНАЗНАЧЕНЫ, КАК ПРАВИЛО, ДЛЯ ПЕРЕНОСКИ ИНФОРМАЦИИ С ОДНОЙ ЭВМ НА ДРУГУЮ. ЖЕСТКИЕ МАГНИТНЫЕ ДИСКИ - ЭТО, КАК ПРАВИЛО, НЕСЪЕМНЫЕ УСТРОЙСТВА, ПРЕДНАЗНАЧЕННЫЕ ДЛЯ ХРАНЕНИЯ БОЛЬШИХ ОБЪЕМОВ ИНФОРМАЦИИ. МАГНИТНЫЕ ЛЕНТЫ, ОПТИЧЕСКИЕ И МАГНИТООПТИЧЕСКИЕ ДИСКИ ИСПОЛЬЗУЮТСЯ И ДЛЯ ТОГО И ДЛЯ ДРУГОГО.

Принцип записи информации на магнитные ленты и диски аналогичен принципу записи звука в магнитофоне. В магнитооптических дисках информация также хранится на магнитном носителе, но чтение и запись осуществляются лучом лазера, что значительно повышает сохранность информации. Информация на лазерных дисках представляет собой участки в различной степени отражающие лазерный луч.

УСТРОЙСТВО ДЛЯ РАБОТЫ С ДИСКЕТАМИ НАЗЫВАЕТСЯ ДИСКОВОДОМ, ДЛЯ РАБОТЫ С ЛАЗЕРНЫМИ ДИСКАМИ - CD-ROM (произносится "си-ди-ром").

5. УПОРЯДОЧИВАНИЕ ИНФОРМАЦИИ НА ДИСКЕ.

Для того, чтобы найти на диске нужную информацию, все данные находящиеся на нем нужно привести в систему аналогично тому, как например в архивах, библиотеках, офисах

приводят в систему хранящиеся там документы и книгипо шкафам, полкам, ящикам, папкам.

Правила упорядочивания информации могут отличаться друг от друга в зависимости от типов программ, управляющих работой компьютеров (операционных систем), хотя общие понятия для всех операционных систем одинаковы. Ниже описаны правила, принятые в операционной системе MS-DOS (произносится "эм-эс-дос").

ЛОГИЧЕСКИЙ ДИСКЭТО ЛИБО ВЕСЬ ДИСК, ЛИБО ЧАСТЬ ДИСКА, ПРЕДНАЗНАЧЕННАЯ ДЛЯ ХРАНЕНИЯ ОПРЕДЕЛЕННОГО ОБЪЕМА ИНФОРМАЦИИ. ЛОГИЧЕСКИЙ ДИСК ОБОЗНАЧАЕТСЯ БОЛЬШОЙ ЛАТИНСКОЙ БУКВОЙ С ДВОЕТОЧИЕМ, НАПРИМЕР, А: , В: , С: , Z: .

В компьютере может иметься доступ к нескольким жестким дискам, дисководам для дискет, CD-ROMам. Каждый из них может представлять собой отдельный логический диск, но некоторые жесткие диски могут быть разделены на части, каждая из которых является отдельным логическим диском. Иногда и часть оперативной памяти может рассматриваться как логический диск (электронный диск), но при выключении питания содержимое такого электронного диска пропадает.

Компьютер работает с каждым логическим диском как с отдельным устройством, хотя на самом деле он может представлять собой лишь часть реального (физического) диска и даже часть оперативной памяти:

Гибкие магнитные диски принято обозначать как диски А: и В: . КАТАЛОГ(ДИРЕКТОРИЯ,англ.directory)- ЧАСТЬ ЛОГИЧЕСКОГО ДИСКА, ПРЕДНАЗНАЧЕННАЯ ДЛЯ ХРАНЕНИЯ ОПРЕДЕЛЕННОГО ОБЪЕМА ИНФОРМАЦИИ. ИМЯ КАТАЛОГА (в слове "каталог" ударение делается на последнем слоге) СОДЕРЖИТ ДО 8 СИМВОЛОВ. ЕГО ПРИНЯТО ЗАПИСЫВАТЬ БОЛЬШИМИ ЛАТИНСКИМИ БУКВАМИ, НАПРИМЕР: STUDENT , IVANOV , TEXT и т.д.

В именах каталогов нельзя использовать пробелы, точки, запятые, но можно использовать цифры и символы $,#,-,_,&,@,!,%,(,),{,},",^,~.

КАТАЛОГ МОЖЕТ ВКЛЮЧАТЬ В СЕБЯ НЕСКОЛЬКО ДРУГИХ КАТАЛОГОВ (ПОДКАТАЛОГОВ) И ВХОДИТЬ В СОСТАВ ОДНОГО ДРУГОГО КАТАЛОГА (НАДКАТАЛОГА). ЛОГИЧЕСКИЙ ДИСК ТАКЖЕ ЯВЛЯЕТСЯ КАТАЛОГОМ САМОГО ВЫСОКОГО УРОВНЯКОРНЕВЫМ КАТАЛОГОМ. ТАКИМ ОБРАЗОМ НА ДИСКЕ ОБРАЗУЕТСЯ СИСТЕМА КАТАЛОГОВ, ИМЕЮЩАЯ ДРЕВОВИДНУЮ СТРУКТУРУ, НАПРИМЕР:

Пусть в какой-то организации (офисе фирмы, конструкторском бюро и т.п.) три сотрудника по фамилиям Иванов, Петров и Сидоров используют для работы один компьютер и, чтобы упорядочить информацию с которой работает каждый из них, на диске С: выделены три каталога IVANOV, PETROV и SIDOROV (см. рисунок). Предположим, что Иванов использует компьютер в двух целяхготовит деловые (или какие-то другие) документы и играет (конечно, в свободное время) в компьютерные игры. Поэтому он выделил в своем каталоге IVANOV два подкаталога TEXTS (для текстов) и GAMES (для игр). В каталоге GAMES, в свою очередь, выделены два других подкаталогаCHESS (для шахмат) и GAMES (для остальных игр). Петров выделил в своем каталоге четыре подкаталога, а Сидоров решил подкаталогов не создавать (наверное он не часто пользуется компьютером).

Так могла образоваться изображенная на рисунке система каталогов, называемая деревом каталогов.

Обратите внимание, что на диске могут быть каталоги с одинаковыми именами, но они должны находиться в разных надкаталогах. Например на рисунке, каталог GAMES находится в надкаталоге IVANOV, но сам является надкаталогом для другого каталога с тем же именем GAMES .

КАТАЛОГ, РАБОТА С КОТОРЫМ ВЕДЕТСЯ В ДАННЫЙ МОМЕНТ ВРЕМЕНИ НАЗЫВАЕТСЯ ТЕКУЩИМ. Каталоги похожи на папки, в которые вкладываются листы бумаги с какой-то информацией. Кстати, в операционной системе WINDOWS'95 (произносится "виндоус 95") каталоги так и называются - папками (folders). А вот роль листов бумаги, вкладываемых в папки, играют файлы.

ФАЙЛИМЕЮЩАЯ СВОЕ ИМЯ, НАХОДЯЩАЯСЯ В ОДНОМ ИЗ КАТАЛОГОВ ЛЮБОГО УРОВНЯ, ОБЛАСТЬ ДИСКА, СОДЕРЖАЩАЯ ОПРЕДЕЛЕННЫЙ ОБЪЕМ ОДНОТИПНОЙ ИНФОРМАЦИИ.

ИМЯ ФАЙЛА СОСТОИТ ИЗ СОБСТВЕННО ИМЕНИ, СОДЕРЖАЩЕГО ОТ 1 ДО 8 СИМВОЛОВ, И НЕОБЯЗАТЕЛЬНОГО РАСШИРЕНИЯ, СОСТОЯЩЕГО ИЗ ТОЧКИ И СЛЕДУЮЩИХ ЗА НЕЙ ОДНОГО, ДВУХ ИЛИ ТРЕХ СИМВОЛОВ. ИМЯ ФАЙЛА ПРИНЯТО ЗАПИСЫВАТЬ МАЛЕНЬКИМИ ЛАТИНСКИМИ БУКВАМИ: student.txt , document.txt , program.c , game1.exe , readme .

В именах файлов и расширениях можно использовать те же символы, что и в именах каталогов.

РАСШИРЕНИЕ ИМЕНИ ФАЙЛА, КАК ПРАВИЛО, УКАЗЫВАЕТ НА ТО, К КАКОМУ ТИПУ ОТНОСИТСЯ ЕГО СОДЕРЖИМОЕ, например:

.txtфайл содержит текст;

.c- в файле содержится текст программы на языке СИ;

.pas- в файле содержится текст программы на языке ПАСКАЛЬ;

.hlp- в файле содержится справочная информация (от англ. help-помощь).

Вообще говоря, расширения, как и имена можно придумывать произвольно, однако определенные программы работают с файлами определенного типа, и, чтобы отличить эти файлы от других, следует придерживаться общепринятых расширений, например:

.doc-в файле содержится текст, созданный программой WORD;

.xls-в файле содержится таблица, созданная программой EXCEL

.wq!-в файле содержится таблица, созданная программой QUATTRO

ФАЙЛЫ, ПРЕДСТАВЛЯЮЩИЕ СОБОЙ ГОТОВЫЕ К ИСПОЛНЕНИЮ ПРОГРАММЫ, ИМЕЮТ РАСШИРЕНИЯ .EXE , .BAT и .COM .

В качестве примера приведем рассмотренное выше дерево каталогов, но с файлами:

Обратите внимание, что файлы autoexec.bat , config.sys , cyr.exe на схеме находятся в корневом каталоге C:, файлы ivan.hlp , john.txt - в каталоге IVANOV. Как и в случае с каталогами, на диске могут быть файлы с одинаковыми именами, но тогда они должны находиться в разных каталогах (файлы game1.exe на схеме).

ПОЛНОЕ ИМЯ ФАЙЛАИМЯ ФАЙЛА С УКАЗАНИЕМ ПУТИ К НЕМУ ОТ КОРНЕВОГО КАТАЛОГА. ПРИ ЭТОМ ИМЕНА КАТАЛОГОВ И ФАЙЛОВ ОТДЕЛЯЮТСЯ ДРУГ ОТ ДРУГА ОБРАТНОЙ КОСОЙ ЧЕРТОЙ - " \ ", НАПРИМЕР:

Полное имя файла нужно для того, чтобы точно указать, на каком диске, в каком каталоге его найти, аналогично тому, как у нас указывается почтовый адрес человека: область, город, улица, дом, квартира и только потом фамилия.

Отличия правил записи имен каталогов (папок) и файлов в операционной системе WINDOWS'95 заключаются в следующем:

1)длина имени файла или папки (каталога) может достигать 255 символов.

2)могут использоваться русские буквы.

3)могут использоваться пробелы.

Например становится допустимым такое имя файла: Письмо моему другу Ивану.doc .

МАСКИ (ШАБЛОНЫ) - ИМЕНА ФАЙЛОВ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ СИМВОЛЫ "*" И "?". СИМВОЛ "?" ЗАМЕНЯЕТ ОДИН ЛЮБОЙ СИМВОЛ (в том числе может обозначать и отсутствие символа). Например, маска text?.doc означает все файлы с именами text1.doc , text2.doc , texta.doc , text.doc и т.д.

СИМВОЛ "*" ЗАМЕНЯЕТ ЛЮБОЕ ЧИСЛО ЛЮБЫХ СИМВОЛОВ. Например, маска text*.doc означает все файлы с именами text1.doc , text2.doc , texta.doc , text11.doc , textabc.doc , textcons.doc и т.д. Маска *.com означает все файлы с любыми именами и расширением .com . Маска text.* означает все файлы с именем text и любыми расширениями. Маска *.* означает все файлы (т.е. с любыми именами и расширениями).

Маски удобно использовать, если Вы не уверены в правильности написания имени нужного Вам файла или хотите найти все файлы какого-то одного типа и выполнить над ними какую-то операцию. Например, по команде удалить из текущего каталога файлы *.* из него будут удалены все файлы.

ЛЕКЦИЯ 3

6.ПРЕДСТАВЛЕНИЕ ТЕКСТОВОЙ ИНФОРМАЦИИ В ЭВМ И ЕЕ ОБЪЕМ.

ЛЮБОЕ СООБЩЕНИЕ НА ЛЮБОМ ЯЗЫКЕ СОСТОИТ ИЗ ПОСЛЕДОВАТЕЛЬНОСТИ СИМВОЛОВБУКВ, ЦИФР, ЗНАКОВ. Действительно, в каждом языке есть свой алфавит из определенного набора букв (например, в русском33 буквы, английском26, и т.д.). Из этих букв образуются слова, которые в свою очередь, вместе с цифрами и знаками препинания образуют предложения, в результате чего и создается текстовое сообщение. Не является исключением и язык на котором "говорит" компьютер, только набор букв в этом языке является минимально возможным.

В ЭВМ ИСПОЛЬЗУЮТСЯ 2 СИМВОЛАНОЛЬ И ЕДИНИЦА (0 и 1), АНАЛОГИЧНО ТОМУ, КАК В АЗБУКЕ МОРЗЕ ИСПОЛЬЗУЮТСЯ ТОЧКА И ТИРЕ. Действительно, закодировав привычные человеку символы (буквы, цифры, знаки) в виде нулей и единиц (или точек и тире), можно составить, передать и сохранить любое сообщение.

ЭТО СВЯЗАНО С ТЕМ, ЧТО ИНФОРМАЦИЮ, ПРЕДСТАВЛЕННУЮ В ТАКОМ ВИДЕ, ЛЕГКО ТЕХНИЧЕСКИ СМОДЕЛИРОВАТЬ, НАПРИМЕР В ВИДЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ. Если в какой-то момент времени по проводнику идет ток, то по нему передается единица, если тока нетноль. Аналогично, если направление магнитного поля на каком-то участке поверхности магнитного диска однона этом участке записан ноль, другоеединица. Если определенный участок поверхности оптического диска отражает лазерный лучна нем записан ноль, не отражаетединица. Оперативная память состоит из очень большого числа триггеровэлектронных схем, состоящих из двух транзисторов. Триггер может сколь угодно долго находиться в одном из двух состоянийкогда один транзистор открыт, а другой закрыт, или наоборот. Одно состояние обозначается нулем, а другое единицей.

ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО ИЗ ДВУХ СИМВОЛОВ-0 ИЛИ 1, НАЗЫВАЕТСЯ 1 БИТ (англ. binary digitдвоичная единица). 1 битминимально возможный объем информации. Он соответствует промежутку времени, в течение которого по проводнику передается или не передается электрический сигнал, участку поверхности магнитного диска, частицы которого намагничены в том или другом направлении, участку поверхности оптического диска, который отражает или не отражает лазерный луч, одному триггеру, находящемуся в одном из двух возможных состояний.

Итак, если у нас есть один бит, то с его помощью мы можем закодировать один из двух символовлибо 0, либо 1.

Если же есть 2 бита, то из них можно составить один из четырех вариантов кодов: 00 , 01 , 10 , 11 .

Если есть 3 битаодин из восьми: 000 , 001 , 010 , 100 , 110 , 101 , 011 , 111 .

Закономерность очевидна:

1бит- 2 варианта,

2бита- 4 варианта,

3бита- 8 вариантов;

Продолжая дальше, получим:

4бита16 вариантов,

5бит32 варианта,

6бит64 варианта,

7бит128 вариантов,

8бит256 вариантов,

9 бит512 вариантов,

10 бит1024 варианта,

....................

N бит - 2 в степени N вариантов.

В обычной жизни нам достаточно 150-160 стандартных символов (больших и маленьких русских и латинских букв, цифр, знаков препинания, арифметических действий и т.п.). Если каждому из них будет соответствовать свой код из нулей и единиц, то 7 бит для этого будет недостаточно (7 бит позволят закодировать только 128 различных символов), поэтому используют 8 бит.

ДЛЯ КОДИРОВАНИЯ ОДНОГО ПРИВЫЧНОГО ЧЕЛОВЕКУ СИМВОЛА В ЭВМ ИСПОЛЬЗУЕТСЯ 8 БИТ, ЧТО ПОЗВОЛЯЕТ ЗАКОДИРОВАТЬ 256 РАЗЛИЧНЫХ СИМВОЛОВ.

СТАНДАРТНЫЙ НАБОР ИЗ 256 СИМВОЛОВ НАЗЫВАЕТСЯ ASCII ( произносится "аски", означает "Американский Стандартный Код для Обмена Информацией"- англ. American Standart Code for Information Interchange).

ОН ВКЛЮЧАЕТ В СЕБЯ БОЛЬШИЕ И МАЛЕНЬКИЕ РУССКИЕ И ЛАТИНСКИЕ БУКВЫ, ЦИФРЫ, ЗНАКИ ПРЕПИНАНИЯ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ И Т.П.

КАЖДОМУ СИМВОЛУ ASCII СООТВЕТСТВУЕТ 8-БИТОВЫЙ ДВОИЧНЫЙ КОД, НАПРИМЕР:

A - 01000001,

B - 01000010,

C - 01000011,

D - 01000100,

и т.д.

Таким образом, если человек создает текстовый файл и записывает его на диск, то на самом деле каждый введенный человеком символ хранится в памяти компьютера в виде набора из восьми нулей и единиц. При выводе этого текста на экран или на бумагу специальные схемы - знакогенераторы видеоадаптера (устройства, управляющего работой дисплея) или принтера образуют в соответствии с этими кодами изображения соответствующих символов.

Набор ASCII был разработан в США Американским Национальным Институтом Стандартов (ANSI), но может быть использован и в других странах, поскольку вторая половина из 256 стандартных символов, т.е. 128 символов, могут быть с помощью специальных программ заменены на другие, в частности на символы национального алфавита, в нашем случае - буквы кириллицы. Поэтому например, передавть по электронной почте за границу тексты, содержащие русские буквы, бессмысленно. В англоязычных странах на экране дисплея вместо русской буквы Ь будет высвечиваться