Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Системное программное обеспечение

.pdf
Скачиваний:
114
Добавлен:
23.02.2016
Размер:
1.26 Mб
Скачать

соглашениями, файловая система должна уметь предоставлять эквивалентные короткие имена (псевдонимы) файлам, имеющим длинные имена. Таким образом, одной из важных задач становится проблема генерации соответствующих коротких имен.

Длинные имена поддерживаются не только новыми файловыми системами, но и новыми версиями хорошо известных файловых систем. Например, в ОС Windows 95 используется файловая система VFAT, представляющая собой существенно измененный вариант FAT. Среди многих других усовершенствований одним из главных достоинств VFAT является поддержка длинных имен. Кроме проблемы генерации эквивалентных коротких имен, при реализации нового варианта FAT важной задачей была задача хранения длинных имен при условии, что принципиально метод хранения и структура данных на диске не должны были измениться.

Обычно разные файлы могут иметь одинаковые символьные имена. В этом случае файл однозначно идентифицируется так называемым составным именем, представляющем собой последовательность символьных имен каталогов. В некоторых системах одному и тому же файлу не может быть дано несколько разных имен, а в других такое ограничение отсутствует. В последнем случае операционная система присваивает файлу дополнительно уникальное имя, так, чтобы можно было установить взаимно-однозначное соответствие между файлом и его уникальным именем. Уникальное имя представляет собой числовой идентификатор и используется программами операционной системы. Примером такого уникального имени файла является номер индексного дескриптора в системе UNIX.

3.Типы файлов

Файлы бывают разных типов: обычные файлы, специальные файлы, файлы-каталоги.

Обычные файлы в свою очередь подразделяются на текстовые и двоичные. Текстовые файлы состоят из строк символов, представленных в ASCII-коде. Это могут быть документы, исходные тексты программ и т.п. Текстовые файлы можно прочитать на экране и распечатать на принтере. Двоичные файлы не используют ASCII-коды, они часто имеют сложную внутреннюю структуру, например, объектный код программы или архивный файл. Все операционные системы должны уметь распознавать хотя бы один тип файлов - их собственные исполняемые файлы.

Специальные файлы - это файлы, ассоциированные с устройствами вводавывода, которые позволяют пользователю выполнять операции ввода-вывода, используя обычные команды записи в файл или чтения из файла. Эти команды обрабатываются вначале программами файловой системы, а затем на некотором этапе выполнения запроса преобразуются ОС в команды управления соответствующим устройством. Специальные файлы, так же как и устройства ввода-вывода, делятся на блок-ориентированные и байт-ориентированные.

Каталог - это, с одной стороны, группа файлов, объединенных пользователем исходя из некоторых соображений (например, файлы, содержащие программы игр, или файлы, составляющие один программный пакет), а с другой стороны - это файл, содержащий системную информацию о группе файлов, его составляющих. В каталоге содержится список файлов, входящих в него, и устанавливается соответствие между файлами и их характеристиками (атрибутами).

В разных файловых системах могут использоваться в качестве атрибутов разные характеристики, например:

информация о разрешенном доступе,

пароль для доступа к файлу,

владелец файла,

создатель файла,

признак "только для чтения",

признак "скрытый файл",

признак "системный файл",

признак "архивный файл",

признак "двоичный/символьный",

признак "временный" (удалить после завершения процесса),

признак блокировки,

длина записи,

указатель на ключевое поле в записи,

длина ключа,

времена создания, последнего доступа и последнего изменения,

текущий размер файла,

максимальный размер файла.

Каталоги могут непосредственно содержать значения характеристик файлов, как это сделано в файловой системе MS-DOS, или ссылаться на таблицы, содержащие эти характеристики, как это реализовано в ОС UNIX (рисунок 2.31). Каталоги могут образовывать иерархическую структуру за счет того, что каталог более низкого уровня может входить в каталог более высокого уровня (рисунок 2.32).

Рис. 2.31. Структура каталогов: а - структура записи каталога MS-DOS байта);

(32

б - структура записи каталога ОС UNIX

Иерархия каталогов может быть деревом или сетью. Каталоги образуют дерево, если файлу разрешено входить только в один каталог, и сеть - если файл может входить сразу в несколько каталогов. В MS-DOS каталоги образуют древовидную структуру, а в UNIX'е - сетевую. Как и любой другой файл, каталог имеет символьное имя и однозначно идентифицируется составным именем, содержащим цепочку символьных имен всех каталогов, через которые проходит путь от корня до данного каталога.

Рис. 2.32. Логическая организация файловой системы а - одноуровневая; б - иерархическая (дерево); в - иерархическая (сеть)

4.Монтирование файловых систем.

Сначала несколько концепций, связанных с файловыми системами. Прежде, чем файловая система будет принята вашей системой, она должна быть примонтирована к какому-то каталогу. Например, если у вас файловая система на дискете, то вы должны примонтировать ее в каталог, скажем /mnt,

для того, чтобы обеспечить доступ к ее файлам (смотрите Раздел 4.6.2). После монтирования файловой системы все файлы этой системы появляются в этом каталоге (и ниже). После размонтирования файловой системы каталог (в нашем случае /mnt) будет пуст, то же самое справедливо для файловой системы на жестком диске. (Прим. переводчика: Каталог /mnt будет пуст, если он был пуст до монтирования, иначе наоборот, станут видными файлы каталога /mnt (основной системы), которые становятся "невидимыми", когда к этому каталогу монтируется файловая система). Система автоматически монтирует файловые системы на ваш жесткий диск во время загрузки. Так называемая "корневая файловая система" монтируется к каталогу /. Если у вас отдельные файловые системы, например, для /usr - она монтируется на /usr. Если у вас только корневая файловая система, то все файлы, включая содержимое /usr, существуют в этой файловой системе.

Команда mount используется для монтирования файловой системы. mount -av

Выполняется из файла /etc/rc (файла системной инициализации во время загрузки, смотрите Раздел 4.10.1). Команда ount -av получает информацию о файловых системах и монтирует в соответствии с файлом /etc/fstab. Пример

файла fstab показан ниже.

 

 

# device

directory

type

options

/dev/hda2

/

ext2

defaults

/dev/hda3

/usr

ext2

defaults

/dev/hda4

none

swap sw

/proc

/proc

proc

none

Первое поле - это устройство (имя монтируемого раздела). Второе поле - точка монтирования. Третье поле - тип файловой системы (например, ext2 для системы типа ext2fs или minix для Minix filesystems). Таблица 4.1 перечисляет различные типы файловых систем, доступных в Linux.

Эта таблица для ядра версии 1.1.37.

Файловая система

Имя типа

Комментарий

Second Extended Filesystem

ext2

Наиболее распространенная для

Linux

 

 

 

Extended Filesystem

ext

Вытеснена системой ext2

Minix Filesystem

minix Файловая система Minix; редко

 

используется

Xia Filesystem

xia

Похожа на ext2; редко используется

UMSDOS Filesystem

umsdos Для инсталяции Linux на разделы

 

MS-DOS

MS-DOS Filesystem

msdos Для доступа к файлам MS-DOS

/proc Filesystem

proc

Дает информацию о процессах для

 

ps и т.п.

ISO 9660 Filesystem

iso9660

Используется большинством CD-ROM

Xenix Filesystem

xenix Для доступа к файлам из Xenix.

System V Filesystem

sysv

Для доступа к файлам из System V

 

вариант для x86.

Coherent Filesystem

coherent Для доступа из Coherent

HPFS Filesystem

hpfs

Доступ только на чтение

для разделов HPFS (DoubleSpace).

Таблица 4.1. Типы Файловых систем Linux

Не все эти типы могут быть доступны на вашей системе; ваше ядро должно иметь соответствующую откомпилированную поддержку. О компиляции ядра смотрите в Разделе 4.7.

Последнее поле файла fstab (options) это было перед Таблицей 4.1 содержит опции монтирования, обычно они устанавливаются в ``defaults''.

Вы можете видеть, что разделы своппинга также включены в /etc/fstab. Они имеют каталог монтирования "tt/none/", и тип "swap". Команда swapon -a выполняемая из /etc/rc используется для обеспечения своппинга на все устройства, перечисленные в /etc/fstab.

Файл fstab содержит одну специальную запись для файловой системы /proc. Как говорилось в Разделе 3.11.1, файловая система /proc используется для хранения информации о системных процессах, доступной памяти и т.п. Если /proc не примонтирован, такие команды, как ps не будут работать.

Литература

Основная:

1.Молчанов А.Ю. Системное программное обеспечение. Учебник для вузов. — СПб.: Питер, 2003. — 396 с.

2.Молчанов А.Ю. Системное программное обеспечение. Лабораторный практикум.- СПб.: Питер, 2005.- 284 с.

3.Юров В.И. Assembler. Учебник для вузов. 2-е издание - СПб.: Питер.- 2004.- 637 с.

4.Компаниец Р.И., Маньков Е.В., Филатов Н.Е. Системное программирование: Основы построения трансляторов + FD.- М.: КОРОНА принт.- 2004.- 255 с.

5.Фельдман Ф.К. Системное программирование на персональном компьютере.- 2004.- 512

6.Ахо А.,Сети Р., Ульман Дж. Компиляторы: принципы, технологии и инструменты: Пер. с англ. — М.: Издательский дом «Вильямс», 2003. — 768 с.

7.Гордеев А.В., Молчанов А.Ю. Системное программное обеспечение. —

СПб.: Питер, 2002. — 734 с.

8.Олифер В.Г., Олифер Н.А. Сетевые операционные системы. СПб.: Питер, 2002. — 544

Дополнительная литература:

1. Малявко А.А. Теория формальных языков: Учеб. пособие: В 3 ч. – Новосибирск: Изд-во НГТУ, 2001. – Ч. 1. – 96 с.

2.Малявко А.А. Теория формальных языков: Учеб. пособие: В 3 ч. – Новосибирск: Изд-во НГТУ, 2002. – Ч. 2. – 96 с.

3.Ф.Льюис, Д. Розенкранц, Р.Стирнз. Теоретические основы проектирования компиляторов. М., Мир, 1979.

4.Л. Бек. Введение в системное программирование. М.,Мир, 1988.

5.В.Е.Котов, В.К.Сабельфельд. Теория схем программ. -М.: Наука, 1978

6.Автоматное управление асинхронными процессами в ЭВМ и дискретных системах /Под ред. В.И.Варшавского. -М.:Наука.

7.Питерсон Дж. Теория сетей Петри и моделирование систем.- М.: Наука. 1984.

8.Минский М. Вычисления и автоматы. - М.: Мир.- 1971.

9.Котов В.Е. Сети Петри. - М.: Наука. - 1984.-

10.Ахо А.,Хопкрофт Дж., Ульман Дж.Построение и анализ вычислительных алгоритмов. - М.: Мир. -1979.

11.Питерсон Дж. Теория сетей Петри и моделирование систем: Пер. с англ. –

М.: Мир, 1984. – 264 с.

Лекция 6 Пример современной операционной системы.

План

1.Семейство ОС CP/M (Windows NT/2000/XP).

2.Семейство UNIX (UNIX, LINUX ).

3.Семейство ОС MVS, OS/390, z/OS.

В90-е годы практически все операционные системы, занимающие заметное место на рынке, стали сетевыми. Сетевые функции сегодня встраиваются в ядро ОС, являясь ее неотъемлемой частью. Операционные системы получили средства для работы со всеми основными технологиями локальных (Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, ATM) и

глобальных (Х.25, frame relay, ISDN, ATM) сетей, а также средства для создания составных сетей (IP, IPX, AppleTalk, RIP, OSPF, NLSP). В

операционных системах используются средства мультиплексирования нескольких стеков протоколов, за счет которого компьютеры могут поддерживать одновременную сетевую работу с разнородными клиентами и серверами. Появились специализированные ОС, которые предназначены исключительно для выполнения коммуникационных задач. Например, сетевая операционная система IOS компании Cisco Systems, работающая в маршрутизаторах, организует в мультипрограммном режиме выполнение набора программ, каждая из которых реализует один из коммуникационных протоколов.

Во второй половине 90-х годов все производители операционных систем резко усилили поддержку средств работы с Интернетом (кроме производителей UNIX-систем, в которых эта поддержка всегда была существенной). Кроме самого стека TCP/IP в комплект поставки начали включать утилиты, реализующие такие популярные сервисы Интернета, как telnet, ftp, DNS и Web. Влияние Интернета проявилось и в том, что компьютер превратился из чисто вычислительного устройства в средство коммуникаций с развитыми вычислительными возможностями.

Особое внимание в течение всего последнего десятилетия уделялось корпоративным сетевым операционным системам. Их дальнейшее развитие представляет одну из наиболее важных задач и в обозримом будущем. Корпоративная oпeрационная система отличается способностью хорошо и устойчиво работать в крупных сетях, которые характерны для больших предприятий, имеющих отделения в десятках городов и, возможно, в разных странах. Таким сетям органически присуща высокая степень гетерогенности программных и аппаратных средств, поэтому корпоративная ОС должна беспроблемно взаимодействовать с операционными системами разных типов и работать на различных аппаратных платформах. К настоящему времени достаточно явно определилась тройка лидеров в классе корпоративных ОС —

это Novell NetWare 4.x и 5.0, Microsoft Windows NT 4.0 и Windows 2000, а также

UNIX-системы различных производителей аппаратных платформ.

Для корпоративной ОС очень важно наличие средств централизованного администрирования и управления, позволяющих в единой базе данных хранить учетные записи о десятках тысяч пользователей, компьютеров, коммуникационных устройств и модулей программного обеспечения, имеющихся в корпоративной сети. В современных операционных системах средства централизованного администрирования обычно базируются на единой справочной службе. Первой успешной реализацией справочной службы корпоративного масштаба была система StreetTalk компании Banyan. К настоящему времени наибольшее признание получила справочная служба NDS компании Novell, выпущенная впервые в 1993 году для первой корпоративной версии NetWare 4.O. Роль централизованной справочной службы настолько велика, что именно по качеству справочной службы оценивают пригодность операционной системы для работы в корпоративном масштабе. Длительная задержка выпуска Windows NT 2000 во многом была связана с созданием для этой ОС масштабируемой справочной службы Active Directory, без которой этому семейству ОС трудно было претендовать на звание истинно корпоративной ОС.

Создание многофункциональной масштабируемой справочной службы является стратегическим направлением эволюции ОС. От успехов этого направления во многом зависит и дальнейшее развитие Интернета. Такая служба нужна для превращения Интернета в предсказуемую и управляемую систему, например для обеспечения требуемого качества обслуживания трафика пользователей, поддержки крупных распределенных приложений, построения эффективной почтовой системы и т. п.

На современном этапе развития операционных систем на передний план вышли средства обеспечения безопасности. Это связано с возросшей ценностью информации, обрабатываемой компьютерами, а также с повышенным уровнем угроз, существующих при передаче данных по сетям, особенно по публичным, таким как Интернет. Многие операционные системы обладают сегодня развитыми средствами защиты информации, основанными на шифрации данных, аутентификации и авторизации.

Современным операционным системам присуща многоплатформенностъ, то есть способность работать на совершенно различных типах компьютеров. Многие операционные системы имеют специальные версии для поддержки кластерных архитектур, обеспечивающих высокую производительность и отказоустойчивость. Исключением пока является ОС NetWare, все версии которой разработаны для платформы Intel, а реализации функций NetWare в виде оболочки для других ОС, например NetWare for AIX, успеха на имели.

В последние годы получила дальнейшее развитие долговременная тенденция повышения удобства работы человека с компьютером. Эффективность работы человека становится основным фактором, определяющим эффективность вычислительной системы в целом. Усилия человека не должны тратиться на настройку параметров вычислительного

процесса, как это происходило в ОС предыдущих поколений. Например, в системах пакетной обработки для мэйнфреймов каждый пользователь должен был с помощью языка управления заданиями определить большое количество параметров, относящихся к организации вычислительных процессов в компьютере. Так, для системы OS/360 язык управления заданиями JCL предусматривал возможность определения пользователем более 40 параметров, среди которых были приоритет задания, требования к основной памяти, предельное время выполнения задания, перечень используемых устройств ввода-вывода и режимы их работы.

Современная операционная система берет на себя выполнение задачи выбора параметров операционной среды, используя для этой цели различные адаптивные алгоритмы. Например, тайм-ауты в коммуникационных протоколах часто определяются в зависимости от условий работы сети. Распределение оперативной памяти между процессами осуществляется автоматически с помощью механизмов виртуальной памяти в зависимости от активности этих процессов и информации о частоте использования ими той или иной страницы. Мгновенные приоритеты процессов определяются динамически в зависимости от предыстории, включающей, например, время нахождения процесса в очереди, процент использования выделенного кванта времени, интенсивность ввода-вывода и т. п. Даже в процессе установки большинство ОС предлагают режим выбора параметров по умолчанию, который гарантирует пусть не оптимальное, но всегда приемлемое качество работы систем.

Постоянно повышается удобство интерактивной работы с компьютером путем включения в операционную систему развитых графических интерфейсов, использующих наряду с графикой звук и видеоизображение. Это особенно важно для превращения компьютера в терминал новой публичной сети, которой постепенно становится Интернет, так как для массового пользователя, терминал должен быть почти таким же понятным и удобным, как телефонный аппарат. Пользовательский интерфейс операционной системы становится все более интеллектуальным, направляя действия человека в типовых ситуациях и принимая за него рутинные решения.

Уровень удобств в использования ресурсов, которые сегодня предоставляют пользователям, администраторам и разработчикам приложений операционные системы изолированных компьютеров, для сетевых операционных систем является только заманчивой перспективой. Пока пользователи и администраторы сети тратят значительное время на попытки выяснить, где находится тот или иной ресурс, разработчики сетевых приложений прилагают много усилий для определения местоположения данных и программных модулей в сети. Операционные системы будущего должны обеспечить высокий уровень прозрачности сетевых ресурсов, взяв на себя задачу организации распределенных вычислений, превратив сеть в виртуальный компьютер. Именно этот смысл вкладывают в лаконичный лозунг «Сеть — это компьютер» специалисты компании Sun, но для превращения лозунга в жизнь разработчикам операционных систем нужно пройти еще немалый путь.

Литература

Основная:

1.Молчанов А.Ю. Системное программное обеспечение. Учебник для вузов.

— СПб.: Питер, 2003. — 396 с.

2.Молчанов А.Ю. Системное программное обеспечение. Лабораторный практикум.- СПб.: Питер, 2005.- 284 с.

3.Юров В.И. Assembler. Учебник для вузов. 2-е издание - СПб.: Питер.- 2004.-

637с.

4.Компаниец Р.И., Маньков Е.В., Филатов Н.Е. Системное программирование: Основы построения трансляторов + FD.- М.: КОРОНА принт.- 2004.- 255 с.

5.Фельдман Ф.К. Системное программирование на персональном компьютере.- 2004.- 512

6.Ахо А.,Сети Р., Ульман Дж. Компиляторы: принципы, технологии и инструменты: Пер. с англ. — М.: Издательский дом «Вильямс», 2003. — 768 с.

7.Гордеев А.В., Молчанов А.Ю. Системное программное обеспечение. —

СПб.: Питер, 2002. — 734 с.

8.Олифер В.Г., Олифер Н.А. Сетевые операционные системы. СПб.: Питер, 2002. — 544

Дополнительная:

1.Малявко А.А. Теория формальных языков: Учеб. пособие: В 3 ч. – Новосибирск: Изд-во НГТУ, 2001. – Ч. 1. – 96 с.

2.Малявко А.А. Теория формальных языков: Учеб. пособие: В 3 ч. – Новосибирск: Изд-во НГТУ, 2002. – Ч. 2. – 96 с.

3.Ф.Льюис, Д. Розенкранц, Р.Стирнз. Теоретические основы проектирования компиляторов. М., Мир, 1979.

4.Л. Бек. Введение в системное программирование. М.,Мир, 1988.

5.В.Е.Котов, В.К.Сабельфельд. Теория схем программ. -М.: Наука, 1978

6.Автоматное управление асинхронными процессами в ЭВМ и дискретных системах /Под ред. В.И.Варшавского. -М.:Наука.

7.Питерсон Дж. Теория сетей Петри и моделирование систем.- М.: Наука. 1984.

8.Минский М. Вычисления и автоматы. - М.: Мир.- 1971.

9.Котов В.Е. Сети Петри. - М.: Наука. - 1984.-

10.Ахо А.,Хопкрофт Дж., Ульман Дж.Построение и анализ вычислительных алгоритмов. - М.: Мир. -1979.

11.Питерсон Дж. Теория сетей Петри и моделирование систем: Пер. с англ. –

М.: Мир, 1984. – 264 с.