Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Timofeev_PDH_SDH_DWDM_OTN

.pdf
Скачиваний:
59
Добавлен:
13.02.2016
Размер:
1.04 Mб
Скачать

320

Глава 11. Первичные сети

Мультиплексоры SDH обычно разделяют на два типа, разница между которыми опреде­ ляется положением мультиплексора в сети SDH (рис. 11.5).

Терминальный мультиплексор (Terminal Multiplexer, ТМ) завершает агрегатный канал, мультиплексируя в нем большое количество трибутарных каналов, поэтому он оснащен одним агрегатным и большим числом трибутарных портов.

Мультиплексор ввода-вывода (Add-Drop Multiplexer, ADM) занимает промежуточное положение на магистрали (в кольце, цепи или смешанной топологии). Он имеет два агре­ гатных порта, транзитом передавая агрегатный поток данных. С помощью небольшого количества трибутарных портов такой мультиплексор вводит в агрегатный поток или выводит из агрегатного потока данные трибутарных каналов.

Пользовательское

Пользовательское

оборудование

оборудование

Пользовательское

оборудование

Рис. 11.5. Типы мультиплексоров SDH

Иногда также выделяют мультиплексоры, которые выполняют операции коммутации над произвольными виртуальными контейнерами —так называемые цифровые кросс­ коннекторы (Digital Cross-Connect, DXC). В таких мультиплексорах не делается различий между агрегатными и трибутарными портами, так как они предназначены для работы в ячеистой топологии, где выделить агрегатные потоки невозможно.

Помимо мультиплексоров, в состав сети SDH могут входить регенераторы сигналов, необ­ ходимые для преодоления ограничений по расстоянию между мультиплексорами. Эти огра­ ничения зависят от мощности оптических передатчиков, чувствительности приемников и затухания волоконно-оптического кабеля. Регенератор преобразует оптический сигнал в электрический и обратно, при этом восстанавливается форма сигнала и его временные характеристики. В настоящее время регенераторы SDH применяются достаточно редко, так как стоимость их ненамного ниже стоимости мультиплексора, а функциональные воз­ можности несоизмеримо беднее.

Стек протоколов

Стек протоколов SDH состоит из протоколов 4-х уровней. Эти уровни никак не соотно­ сятся с уровнями модели OSI, для которой вся сеть SDH представляется как оборудование физического уровня.

Фотонный уровень имеет дело с кодированием битов информации путем модуляции света. Для кодирования оптического сигнала применяется потенциальный код NRZ, обладающий свойствами самосинхронизации.

Сети SONET/SDH

321

Уровень секции поддерживает физическую целостность сети. Регенераторной секцией в технологии SDH называется каждый непрерывный отрезок волоконно-оптического ка­ беля, который соединяет между собой такие, например, пары устройств SONET/SDH, как мультиплексор и регенератор, регенератор и регенератор, но не два мультиплексора. Ком­ поненты регенераторной секции поддерживают протокол, который имеет дело с определен­ нойчастью заголовка кадра, называемой заголовком регенераторной секции (Regenerator Section OverHead, RSOH), и который на основе служебной информации может проводить тестирование секции и выполнять операции административного контроля.

Уровеньлинии отвечает за передачу данных полинии между двумя мультиплексорами сети, поэтому линию также часто называют мультиплексной секцией. Протокол этого уровня работает с кадрами уровней STS-N для выполнения различных операций мультиплекси­ рования и демультиплексирования, а также вставки и удаления пользовательских данных. Кроме того, протокол линии ответственен за реконфигурирование линии в случае отказа какого-либо ее элемента —оптического волокна, порта или соседнего мультиплексора. Служебная информация мультиплексной секции располагается в части заголовка кадра, называемой заголовком мультиплексной секции (Multiplex Section OverHead, MSOH).

Уровень тракта отвечает за доставку данных между двумя конечными пользователями сети. Тракт —это составное виртуальное соединение между пользователями. Протокол тракта должен принять данные, поступающие в пользовательском формате, например формате Т-1, и преобразовать их в синхронные кадры STM-N.

На рис. 11.6 показано распределение протоколов SDH по типам оборудования SDH.

Данные

Данные

 

Мультиплексная

 

секция

<

----------------------------- ►

 

Регенераторная

мультиплексор

Мультиплексор

мультиплексор

 

ввода-вывода

 

 

Рис. 11.6. Стек протоколов технологии SDH

 

322

Глава 11. Первичные сети

Кадры STM-N

Основные элементы кадра STM-1 показаны на рис. 11.7, а в табл. 11.3 приведена структура заголовков регенераторной и мультиплексной секций.

Кадр

STM-1 9

Кадр

STM-1 9

Таблица 11.3. Состав заголовков регенераторной и мультиплексной секций

Заголовок регенераторной секции

Заголовок мультиплексной секции

Синхробайты

Байты контроля ошибок для регенераторной секции

Один байт служебного аудиоканала (64 Кбит/с)

Три байта канала передачи данных (Data Communication Channel, DCC), работающего на скорости 192 Кбит/с

Байты, зарезервированные для национальных операторов связи

Поля указателей HI, Н2, НЗ задают положе­ ние начала виртуального контейнера VC-4 или трех виртуальных контейнеров VC-З относи­ тельно поля указателей

Байты контроля ошибок для мультиплексной секции

Шесть байтов канала передачи данных, работающего на скорости 576 Кбит/с

Два байта протокола автоматической защиты трафика (байты К1 и К2), обеспечивающего живучесть сети

Байт передачи сообщений статуса системы синхрони­ зации

Остальные байты заголовка MSOH либо зарезерви­ рованы для национальных операторов связи, либо не используются

Сети SONET/SDH

323

Кадр обычно представляют в виде матрицы, состоящей из 270 столбцов и 9 строк. Пер­ вые 9 байт каждой строки отводятся под служебные данные заголовков, из последующих 261 байт 260 отводятся под полезную нагрузку (данные таких структур, как AUG, AU, TUG, TU и VC), а один байт каждой строки —под заголовок тракта, что позволяет кон­ тролировать соединение «из конца в конец».

Рассмотрим механизм работы указателя Н1-Н2-НЗ на примере кадра STM-1, переносящего контейнер VC-4. Указатель занимает 9 байт четвертого ряда кадра, причем под каждое из полей HI, Н2 и НЗ в этом случае отводится по 3 байта. Разрешенные значения указателя находятся в диапазоне 0-782, причем указатель отмечает начало контейнера VC-4 в трех­ байтовых единицах. Например, если указатель имеет значение 27, то первый байт VC-4 находится на расстоянии 27 х 3 - 81 байт от последнего байта поля указателей, то есть является 90-м байтом (нумерация начинается с единицы) в 4-й строке кадра STM-1. Фиксированное значение указателя позволяет учесть фазовый сдвиг между данным муль­ типлексором и источником данных, в качестве которого может выступать мультиплексор PDH, оборудование пользователя с интерфейсом PDH или другой мультиплексор SDH. В результате виртуальный контейнер передается в двух последовательных кадрах STM-1, каки показано на рис. 11.7.

Указатель может отрабатывать не только фиксированный фазовый сдвиг, но и рассогласо­ ваниетактовой частоты мультиплексора с тактовой частотой устройства, от которого при­ нимаются пользовательские данные. Для компенсации этого эффекта значение указателя периодически наращивается или уменьшается на единицу.

Если скорость поступления данных контейнера VC-4 меньше, чем скорость отправки STM-1, то у мультиплексора периодически (этот период зависит от величины рассогла­ сования частоты синхронизации) возникает нехватка пользовательских данных для заполнения соответствующих полей виртуального контейнера. Поэтому мультиплексор вставляет три «холостых» (незначащих) байта в данные виртуального контейнера, после чего продолжает заполнение VC-4 «подоспевшими» за время паузы пользовательскими данными. Указатель наращивается на единицу, что отражает запаздывание начала очеред­ ного контейнера VC-4 на три байта. Эта операция над указателем называется положитель­ ным выравниванием. В итоге средняя скорость отправляемых пользовательских данных становится равной скорости их поступления, причем без вставки дополнительных битов в стилетехнологии PDH.

Если жескорость поступления данных VC-4 выше, чем скорость отправки кадра STM-1, то умультиплексора периодически возникает потребность во вставке в кадр «лишних» (преадевременно пришедших) байтов, для которых в поле VC-4 нет места. Для их размещения используются три младших байта указателя, то есть поле НЗ (само значение указателя умещается в поля Н ій Н2). Указатель при этом уменьшается на единицу, поэтому такая операция носит название отрицательного выравнивания.

Тотфакт,что выравнивание контейнера VC-4 происходит с дискретностью в три байта, объ­ ясняетсядостаточно просто. Дело в том, что в кадре STM-1 может переноситься либо один контейнерVC-4, либо три контейнера VC-З. Каждый из контейнеров VC-З имеет в общем случае независимое значение фазы относительно начала кадра, а также собственную вели­ чину рассогласования частоты. Указатель VC-З в отличие от указателя VC-4 состоит уже неиздевяти, а из трех байтов: HI, Н2, НЗ (каждое из этих полей —однобайтовое). Эти три указателя помещаются в те же байты, что и указатель VC-4, но по схеме с чередованием байтов, то есть в порядке Hl-1, Hl-2, Hl-3, Н2-1, Н2-2, Н2-3, НЗ-1, НЗ-2, НЗ-З (второй

324

Глава 11. Первичные сети

индекс идентифицирует определенный контейнер VC-З). Значения указателей VC-З ин­ терпретируются в байтах, а не трехбайтовых единицах. При отрицательном выравнивании контейнера VC-З лишний байт помещается в соответствующий байт НЗ-1, НЗ-2 или НЗ-З — в зависимости от того, над каким из контейнеров VC-З проводится операция.

Вот мы и дошли до размера смещения для контейнеров VC4 —этот размер был выбран для унификации этих операций над контейнерами любого типа, размещаемыми непосред­ ственно в AUG кадра STM-1. Выравнивание контейнеров более низкого уровня всегда происходит с шагом в один байт.

При объединении блоков TU и AU в группы в соответствии с описанной схемой (см. рис. 11.7) выполняется их последовательное побайтное расслоение, так что период сле­ дования пользовательских данных в кадре STM-N совпадает с периодом их следования в трибутарных портах. Это исключает необходимость в их временной буферизации, поэтому говорят, что мультиплексоры SDH передают данные вреальном масштабе времени.

Упомянутая ранее техника прямой коррекции ошибок (FEC) была стандартизована в техно­ логии SDH гораздо позже принятия основного ядра стандартов SDH. Напомним, что эта техника основана на применении самокорректирующих кодов, позволяющих исправлять искажения битов данных «на лету», то есть не прибегая к их повторной передаче, а исполь­ зуя избыточную часть кода. Такая техника может существенно повысить эффективную скорость передачи данных при наличии помех или сбоев в работе приемопередатчиков. Обычно к прямой коррекции ошибок мультиплексоры SDH прибегают на скоростях 2,5 Гбит/с и выше.

Типовые топологии

В сетях SDH применяются различные топологии связей. Наиболее часто используются кольца и линейные цепи мультиплексоров, также находит все большее применение ячеи­ стая топология, близкая к полносвязной.

Кольцо SDH строится из мультиплексоров ввода-вывода, имеющих, по крайней мере, по два агрегатных порта (рис. 11.8, а). Пользовательские потоки вводятся в кольцо и выво­ дятся из кольца через трибутарные порты, образуя двухточечные соединения (на рисунке показаны в качестве примера два таких соединения). Кольцо является классической регулярной топологией, обладающей потенциальной отказоустойчивостью —при одно­ кратном обрыве кабеля или выходе из строя мультиплексора соединение сохранится, если его направить по кольцу в противоположном направлении. Кольцо обычно строится на основе кабеля с двумя оптическими волокнами, но иногда для повышения надежности и пропускной способности применяют четыре волокна.

Цепь (рис. 11.8, б) это линейная последовательность мультиплексоров, из которых два оконечных играют роль терминальных мультиплексоров, остальные —мультиплексоров ввода-вывода. Обычно сеть с топологией цепи применяется в тех случаях, когда узлы име­ ют соответствующее географическое расположение, например вдоль магистрали железной дороги или трубопровода. Правда, в таких случаях может применяться и плоское кольцо (рис. 11.8, в), обеспечивающее более высокий уровень отказоустойчивости за счет двух до­ полнительных волокон в магистральном кабеле и по одному дополнительному агрегатному порту у терминальных мультиплексоров.

Эти базовые топологии могут комбинироваться при построении сложной и разветвленной сети SDH, образуя участки с радиально-кольцевой топологией, соединениями «кольцокольцо» и т. п. Наиболее общим случаем является ячеистая топология (рис. 11.8, г), при

Сети SONET/SDH

325

которой мультиплексоры соединяются друг с другом большим количеством связей, за счет чего сеть можно достичь очень высокой степени производительности и надежности.

Рис. 11.8. Типовые топологии

Методы обеспечения живучести сети

Одной из сильных сторон первичных сетей SDH является разнообразный набор средств отказоустойчивости, который позволяет сети быстро (за десятки миллисекунд) восстано­ витьработоспособность в случае отказа какого-либо элемента сети —линии связи, порта или карты мультиплексора, мультиплексора в целом.

В SDH в качестве общего названия механизмов отказоустойчивости используется термин автоматическое защитное переключение (Automatic Protection Switching, APS), отра­ жающийфакт перехода (переключения) на резервный путь или резервный элемент муль­ типлексора при отказе основного. Сети, поддерживающие такой механизм, в стандартах SDH названы самовосстанавливающимися.

Всетях SDH применйются три схемы защиты.

Защита 1+1 означает, что резервный элемент выполняет ту же работу, что и основной. Например, при защите трибутарной карты по схеме 1+1 трафик проходит как через рабочую карту (резервируемую), так и через защитную (резервную).

Защита 1:1 подразумевает, что защитный элемент в нормальном режиме не выполняет функции защищаемого элемента, а переключается на них только в случае отказа.

326

Глава 11. Первичные сети

Защита i:N предусматривает выделение одного защитного элемента на N защищаемых. При отказе одного из защищаемых элементов его функции начинает выполнять защит­ ный, при этом остальные элементы остаются без защиты —до тех пор, пока отказавший элемент не будет заменен.

В зависимости от типа защищаемого путем резервирования элемента сети в оборудовании

исетях SDH применяются следующие основные виды автоматической защиты: защитное переключение оборудования, защита карт, защита мультиплексной секции, защита сетевого соединения, разделяемая защита мультиплексной секции в кольцевой топологии.

Защитное переключение оборудования (Equipment Protection Switching, EPS) —за­ щита блоков и элементов оборудования SDH. Применяется для таких жизненно важных элементов мультиплексора, как процессорный блок, блок коммутации (кросс-коннектор), блок питания, блок ввода сигналов синхронизации и т. п. EPS обычно работает по схеме 1+1 или 1:1.

Защита карт (Card Protection, CP) —защита агрегатных и трибутарных карт мультиплек­ сора; позволяет мультиплексору автоматически продолжать работу в случае отказа одной из агрегатных или трибутарных карт. Используется защита по схемам 1+1, 1:1 и \:N. За­ щита 1+1 обеспечивает непрерывность транспортного сервиса, так как трафик пользова­ тельских соединений не прерывается при отказе карты. В приведенном на рис. 11.9 примере в мультиплексоре поддерживается защита трибутарных двухпортовых карт по схеме 1+1. Одна из трибутарных карт является основной, или рабочей, другая —защитной. Режим работы пары связанных таким образом карт задается командой конфигурирования муль­ типлексора. В режиме, когда обе трибутарные карты являются работоспособными, трафик обрабатывается параллельно каждой картой.

Трибутарные Мультиплексор SDH

Р1

Р2

Рис. 11.9. Защита карт по схеме 1+1

Сети SONET/SDH

327

Для переключения трафика между трибутарными картами используется дополнительная карта-переключатель. Входящий трафик каждого порта поступает на входной мост картыпереключателя, который разветвляет трафик и передает его на входы соответствующих портов трибутарных карт. Агрегатная карта получает оба сигнала STM-N от трибутарных карт и выбирает сигнал только от активной в данный момент карты. Исходящий трафик от агрегатной карты также обрабатывается обеими трибутарными картами, но картапереключатель передает на выход только трафик от активной карты.

При отказе основной карты или другом событии, требующем перехода на защитную карту (деградация сигнала, ошибка сигнала, удаление карты), агрегатная карта по команде от блокауправления мультиплексором переходит на прием сигнала от защитной трибутарной карты. Одновременно карта-переключатель также начинает передавать на выход сигналы выходящего трафика от защитной карты.

Данный способ обеспечивает автоматическую защиту всех соединений, проходящих через защищаемую карту. При установлении защиты типа СР конфигурация соединений рабочей картыдублируется для защитной карты.

Защита мультиплексной секции (Multiplex Section Protection, MSP), то есть участка сети междудвумя смежными мультиплексорами SDH, действует более избирательно по срав­ нению с защитой карт. Защищается секция между двумя мультиплексорами, включающая два порта и линию связи (возможно, в свою очередь, включающую регенераторы, но не мультиплексоры). Обычно применяется схема защиты 1+1. При этом для рабочего канала (верхняя пара соединенных кабелем портов на рис. 11.10, а) конфигурируется защитный канал (нижняя пара портов). При установлении защиты MSP в каждом мультиплексоре необходимо выполнить конфигурирование, указав связь между рабочим и защитным пор­ тами. В исходном состоянии весь трафик передается по обоим каналам (как по рабочему, так и по защитному).

Рис. 11.10. Защита мультиплексной секции

Существует однонаправленная и двунаправленная защита MSP. При однонаправленной защите (именно этот случай показан на рисунке) решение о переключении принимает только один из мультиплексоров —тот, который является приемным для отказавшего канала. Этот мультиплексор после обнаружения отказа (отказ порта, ошибка сигнала, деградация сигнала и т. п.) переходит на прием по защитному каналу. При этом передача иприем ведутся по разным портам (рис. 11.20, б).

328

Глава 11. Первичные сети

В случае двунаправленной защиты MSP при отказе рабочего канала в каком-либо направле­ нии выполняется полное переключение на защитные порты мультиплексоров. Для уведом­ ления передающего (по рабочему каналу) мультиплексора о необходимости переключения принимающий мультиплексор использует протокол, называемый протоколом «К-байт». Этот протокол указывает в двух байтах заголовка кадра STM-N статус рабочего и защит­ ного каналов, а также детализирует информацию об отказе. Механизм MSP обеспечивает защиту всех соединений, проходящих через защищаемую мультиплексную секцию. Время переключения защиты MSP, согласно требованиям стандарта, не должно превышать 50 мс.

Защита сетевого соединения (Sub-Network Connection Protection, SNC-P), то есть защита пути (соединения) через сеть для определенного виртуального контейнера, обеспечивает переключение определенного пользовательского соединения на альтернативный путь при отказе основного пути. Объектом защиты SNC-P является трибутарный трафик, помещен­ ный в виртуальный контейнер определенного типа (например, в VC-12, VC-З или VC-4). Используется схема защиты 1 +1.

Защита SNC-P конфигурируется в двух мультиплексорах: во входном, в котором трибу­ тарный трафик, помещенный в виртуальный контейнер, разветвляется, и в выходном, в котором сходятся два альтернативных пути трафика. Пример защиты SNC-P показан на рис. 11.11. В мультиплексоре ADM 1 для виртуального контейнера VC-4 трибутарного порта Т2 заданы два соединения: с одним из четырех контейнеров VC-4 агрегатного порта А1 и с одним из четырех контейнеров VC-4 агрегатного порта А2. Одно из соединений конфигурируется как рабочее, второе —как защитное, при этом трафик передается по обоим соединениям. Промежуточные (для данных соединений) мультиплексоры конфигурируются обычным образом. В выходном мультиплексоре контейнер VC-4 трибутарного порта ТЗ также соединяется с контейнерами —агрегатного порта А1 и агрегатного порта А2. Из двух поступающих на порт ТЗ потоков выбирается тот, качество которого выше (при равном нормальном качестве выбирается сигнал из агрегатного порта, указанного при конфигурировании в качестве рабочего).

Рис. 11.11. Защита сетевого соединения

Сети SONET/SDH

329

Защита SNC-P работает в любых топологиях сетей SDH, в которых имеются альтернатив­ ные пути следования трафика, то есть кольцевых и ячеистых.

Разделяемая защита мультиплексной секции в кольцевой топологии (Multiplex Section Shared Protection Ring, MS-SPRing) обеспечивает в некоторых случаях более экономичную защиту трафика в кольце. Хотя защита SNC-P вполне подходит для кольцевой топологии сети SDH, в некоторых случаях ее применение снижает полезную пропускную способность кольца, так как каждое соединение потребляет удвоенную полосу пропускания вдоль всего кольца. Так, в кольце STM-16 можно установить только 16 защищенных по типу SNC-P соединений VC-4 (рис. 11.12).

16 защищенных соединений VC-4, распределение трафика - звезда с центром в точке А

Защитные соединения

Рабочие соединения

Рис. 11.12. Защита SNC-P в кольце

Защита MS-SPRing позволяет использовать пропускную способность кольца более эф­ фективно, так как полоса пропускания не резервируется заранее для каждого соединения. Вместо этого резервируется половина пропускной способности кольца, но эта резервная полоса выделяется для соединений динамически, по мере необходимости, то есть после обнаружения факта отказа линии или мультиплексора. Степень экономии полосы при применении защиты MS-SPRing зависит от распределения трафика.

Если весь трафик сходится в один мультиплексор, то есть имеется звездообразное рас­ пределение, защита KlS-SPRing экономии по сравнению с SNC-P вообще не дает. Пример такой ситуации представлен на рис. 11.13, я, где центром «тяготения» трафика является мультиплексор Л, а в кольце установлены те же 16 защищенных соединений, что и в при­ мере защиты SNC-P на рис. 11.12. Для защиты соединений резервируется 8 из 16 вирту­ альныхконтейнеров агрегатного потока STM-16.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]