Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Dressel.Gruner.Electrodynamics of Solids.2003

.pdf
Скачиваний:
66
Добавлен:
27.08.2013
Размер:
3.91 Mб
Скачать

138 6 Semiconductors

results after some calculations [Woo72], and we define a polarizability

 

P(t)

 

e2 r

|

2

 

2ωl0

 

α(ˆ t) =

 

 

= l

| l0

 

 

 

,

E(t)

h¯

 

 

 

ωl20 ω2

which is purely real as no absorption has been considered. We use h¯ ωl0 = El E0 for the energy difference between the two states. The dielectric constant, for N atoms, is then

 

(ω)

=

 

+

π

α(ω)

=

 

+

4π N e2

l

2m

 

|rl0|2 hωl0

.

 

 

 

 

m

 

 

 

1

 

1

4 N

 

1

 

h¯ 2 ωl20

ω2

(6.1.6)

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

The polarizability can be regarded as a parameter accounting for the effectiveness of the transition, and the fraction of energy absorbed can be expressed in a dimensionless unit as

fl0 =

2m

hωl0 |rl0|2 .

(6.1.7)

2

 

h

¯

 

 

¯

 

 

This is called the oscillator strength, which was introduced in Eq. (5.1.32) in terms of the momentum matrix element |pl0|2:

f

 

 

2|pl0|2

 

(6.1.8)

l0

= mhω

;

 

 

 

 

 

¯ l0

 

 

both can readily be converted by using the commutation relation [p, x] = −ih¯ . The oscillator strength is related to the power absorbed by the transmission, which

reads as P = Wl0hωl0, with the number of transitions per second and per volume

¯

d

 

 

π e2 E2

 

Wl0 =

 

al al

=

 

|rl0|2 .

(6.1.9)

dt

2h¯ 2

As discussed in Appendix D in more detail, the sum of all transitions should add up to unity; this is the so-called oscillator strength sum rule

With this notation

l

fl0 = 1

.

 

(6.1.10)

 

 

 

 

 

 

 

1(ω) = 1

+

4π N e2

l

fl0

;

(6.1.11)

 

m

ωl20 ω2

this refers to the real part of the dielectric constant. Kronig relation we obtain also the imaginary part, constant reads

By virtue of the Kramers– and the complex dielectric

ˆ(ω) = 1 +

4π N e2

fl0

ωl20

1

ω2 +

iπ

δ ω2

ωl20

 

. (6.1.12)

m l

2ω

 

 

 

 

 

 

 

 

 

$

 

%

 

6.1 The Lorentz model

 

139

For N atoms, all with one excited state, at energy hω

, the dielectric constant is

¯

l0

 

shown in Fig. 6.1. 1= 0) is a positive quantity, and 1(ω) increases as the frequency is raised and eventually diverges at ω = ω1. It changes sign at ωl0 and decreases as the frequency increases. Finally we find a second zero-crossing (with positive slope) from 1 < 0 to 1 > 0 at the so-called plasma frequency

ωp =

4

π N e2

 

1/2

,

 

m

in analogy to the free-electron case of metals. Here we have assumed that there is no absorption of energy by the collection of N atoms, the exception being the absorption process associated with the transitions between the various energy levels. When the system is coupled to a bath, the energy levels assume a lifetime broadening; this is described by a factor exp{−t/2τ }. With such broadening included, the transitions spread out to have a finite width, and the complex dielectric constant becomes

ˆ(ω) = 1 +

4π N e2

l

fl

0

.

(6.1.13)

m

ωl20 ω2

iω/τ

This will remove the singularity at the frequency ωl0, and 1(ω) for broadened energy levels is also displayed in Fig. 6.1.

Some of the above results can be recovered by assuming the response of a classical harmonic oscillator. This of course is a highly misleading representation of the actual state of affairs in semiconductors, where the absence of dc conduction is due to full bands and not to the localization of electron states. Nevertheless, to examine the consequences of this description, a comparison with the Drude model is a useful exercise. We keep the same terms that we have included for the Drude description, the inertial and relaxational response, and supplement these with a restoring force K . This so-called Lorentz model is that of a harmonic oscillator

d2r

 

1 dr

+ ω02r = −

e

 

 

 

+

 

 

 

 

 

E(t) .

(6.1.14)

dt2

τ dt

m

Here ω0 = (K /m)1/2, where m is the mass of the electron, and τ takes into account damping effects. A model such as that given by the above equation obviously does not lead to a well defined energy gap, but it is nevertheless in accord with the major features of the electrodynamics of a non-conducting state and is widely used to describe the optical properties of non-conducting materials. When the local electric field E has an exp{−iωt} time dependence, we find

r(ω)

=

eE/m

,

02 ω2) iω/τ

ˆ

 

140

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ε

40

 

 

 

 

 

 

 

 

1

 

 

 

 

 

constant

20

 

 

 

 

 

 

 

 

 

 

 

 

 

Dielectric

0

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

0

 

 

 

 

 

 

10

6 Semiconductors

ν0 = 100 cm1 νp = 500 cm1

γ= 0 cm1

γ= 50 cm1

101

102

103

104

 

Frequency ν (cm1)

 

 

Fig. 6.1. Frequency dependence of the dielectric constant ˆ(ω) for a transition between well defined energy levels with energy separation ω0/(2π c) = ν0 = 100 cm1, together with the dielectric constant for a transition between energy levels of width 1/(2π cτ ) = γ = 50 cm1; the spectral weight is given by the plasma frequency ωp/(2π c) = νp =

500 cm1.

and for the induced dipole moment pˆ (ω) = −erˆ(ω) we obtain

pˆ

 

e2

1

 

(ω) =

 

E

 

= αˆ a(ω)E ,

m

02 ω2) iω/τ

where αˆ a(ω) is the atomic polarizability. The macroscopic polarizability is the sum over all the atoms N per unit volume involved in this excitation: P = N pˆ = N αˆ aE = χˆeE. Since the dielectric constant is related to the dielectric susceptibility via ˆ(ω) = 1+4π χˆe(ω), we obtain for the frequency dependent complex dielectric constant

ˆ(ω) = 1 +

4π N e2

1

= 1

+

ωp2

. (6.1.15)

m

 

02 ω2) iω/τ

02 ω2) iω/τ

We assume here that each atom contributes one electron to the absorption process.

6.1 The Lorentz model

141

Conductivity σ (1 cm1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80

 

 

 

ν0

= 100 cm

1

σ1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

 

 

 

γ

= 50 cm1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

νp

= 500 cm1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

σ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

101

 

100

101

102

103

104

105

 

 

 

 

 

 

 

Frequency ν (cm1)

 

 

 

 

 

 

Fig. 6.2. Real and imaginary parts of the conductivity σˆ (ω) versus frequency calculated after the Lorentz model (6.1.16) for center frequency ν0 = ω0/(2π c) = 100 cm1, the width γ = 1/(2π cτ ) = 50 cm1, and the plasma frequency νp = ωp/(2π c) = 500 cm1.

For the complex conductivity we can write

 

 

 

σˆ (ω) =

N e2

 

 

ω

,

(6.1.16)

m i02 ω2) + ω/τ

where ω0 is the center frequency, often called the oscillator frequency, 1denotes the broadening of the oscillator due to damping, and ωp = 4π N e2/m 1/2 describes the oscillator strength, and is referred to as the plasma frequency. It is clear by comparing this expression with Eq. (5.1.4) that the Drude model can be obtained from the Lorentz model by setting ω0 = 0. This is not surprising, as we have retained only the inertial and damping terms to describe the properties of the metallic state.

6.1.2 Optical properties of the Lorentz model

The frequency dependence of the various optical constants can be evaluated in a straightforward manner. Fig. 6.2 displays the real and imaginary parts of the

142

6 Semiconductors

 

60

 

 

 

 

 

 

ν0

 

ε

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

constant

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

constantε

40

 

 

 

 

 

 

 

 

 

 

Dielectric

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dielectric

20

 

 

 

 

 

 

 

ε2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

γ

ε1

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

200

50

 

 

 

 

 

 

 

 

40

 

 

ε1

 

 

 

 

 

30

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

0

 

 

ε2

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

10

1

100

101

102

103

104

105

Frequency ν (cm1)

νp

γ = 50 cm1 ν0 = 100 cm1 νp = 500 cm1

400

600

800

1000

Frequency ν (cm1)

Fig. 6.3. Frequency

dependent

dielectric constant (ω)

of a Lorentz oscillator

1

 

= 50 cm

1

ˆ

= 500 cm

1

 

(Eq. (6.1.15)) with ν0

= 100 cm

 

, γ

 

, and νp

 

. The extrema

of 1 are at ±γ /2 around the oscillator frequency ν0; 1(ω) crosses zero at approximately ν0 and νp. The inset shows the real and imaginary parts of the dielectric constant on a logarithmic frequency scale.

complex conductivity σˆ (ω),

 

 

 

 

 

 

 

 

σ

(ω)

 

ωp2

 

ω2

and

σ

(ω)

 

ωp2

 

ω(ω02 ω2)

 

= 4π (ω02 ω2)2 + ω22

= − 4π (ω02 ω2)2 + ω22

1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

(6.1.17)

as a function of frequency. We have chosen the center frequency ν0 = ω0/(2π c) = 100 cm1, the width γ = 1/(2π cτ ) = 50 cm1, and the plasma frequency νp =

ωp/(2π c) = 500 cm1, typical of a narrow gap semiconductor.

The real and

imaginary parts of the dielectric constant,

 

1(ω) = 1 +

ωp202 ω2)

(6.1.18a)

02 ω2)2 + ω22

 

6.1 The Lorentz model

143

Refractive index N

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ

= 50 cm1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

ν0 = 100 cm1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

νp

= 500 cm1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

200

400

600

 

800

 

1000

Frequency ν (cm1)

Fig. 6.4. Refractive index n and extinction coefficient k versus frequency calculated using the Lorentz model for ν0 = 100 cm1, γ = 50 cm1, and νp = 500 cm1. Absorption (corresponding to large k) occurs mainly in the range ±γ around ν0.

and

ωp2ω/τ

(6.1.18b)

2(ω) = 02 ω2)2 + ω22

are displayed in Fig. 6.3 on both linear and logarithmic frequency scales. The refraction coefficient Nˆ can be calculated using Eqs (2.3.3) and (2.3.4); the frequency dependence of the real and imaginary parts of Nˆ are shown in Fig. 6.4. Using these parameters, we can, by employing Eqs (2.4.15) and (2.4.14), calculate the reflectivity R(ω) and the phase shift φr(ω), and the results are displayed in Fig. 6.5. With the help of Eqs (2.3.34) the real and imaginary parts of the complex surface impedance, RS(ω) and XS(ω), are calculated and displayed in Fig. 6.6. The electronic loss function 1/ ˆ of a Lorentz oscillator is shown in Fig. 6.7.

Three spectral ranges, the Hagen–Rubens, the relaxation, and the transparent regime, could be distinguished in the case of the Drude model; for the Lorentz model here four regimes with distinctively different spectral characteristics are of importance: a low frequency range at which the material does not absorb; the

144

6 Semiconductors

Reflectivity R

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

ν0

R

 

 

 

 

γ

= 50 cm1

 

 

0.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν0

= 100 cm1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν

 

 

νp = 500 cm1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

φr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phase φ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

200

400

600

 

 

800

 

 

1000

 

 

 

 

 

 

 

 

 

Frequency ν (cm1)

 

 

 

 

 

 

 

 

Fig. 6.5. Reflectivity R and the phase angle φr as a function of frequency in the Lorentz model. The reflectivity shows a strong increase at the center frequency of the oscillator ν0 = 100 cm1, has a plateau between ν0 and νp, and drops at νp = 500 cm1.

spectral range close to the center frequency ω0 at which electrons are excited and thus absorption dominates; a range of high reflectivity for ω0 < ω < ωp; and the transparent regime for large frequencies ω > ωp.

Low frequency range

At low frequencies ω < (ω0 1/τ ) the real part of the conductivity σ1 is small and there is little absorption. The real part of the dielectric constant saturates at a constant value 10) as the frequency is reduced. It can be evaluated by the Kramers–Kronig relation (3.2.31) with 1→ ∞) = 1:

 

 

 

 

2

 

2(ω)

 

 

 

 

2

 

 

 

 

ωp2

 

1(0)

=

1

+

 

 

0

 

 

 

dω

1

+

 

0

ω 2(ω) dω

=

1

+

 

. (6.1.19)

π

 

ω

π ω02

ω02

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this region, the behavior of the refractive index n(ω) follows the dielectric constant. Depending on its value in the low frequency range the reflectivity can

6.1 The Lorentz model

145

Surface impedance ZS ()

10

3

 

 

 

 

 

 

 

 

 

γ

= 50 cm1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν0

= 100 cm1

ν0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

νp = 500 cm1

102

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rs

 

 

 

 

101

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Xs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

101

 

 

 

 

 

 

 

 

ν

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

101

100

101

102

103

104

105

Frequency ν (cm1)

Fig. 6.6. Frequency dependence of the complex surface impedance Zˆ S(ω) = RS(ω) + iXS(ω) calculated after the Lorentz model. There is a peak in both the real and imaginary parts at the plasma frequency νp = 500 cm1.

be large

 

1

 

 

 

2

 

1

n

 

2

 

1

 

 

 

 

R =

 

 

 

 

 

 

=

1

 

 

1

 

1

 

n

 

 

 

+

 

 

 

 

 

 

 

+

 

 

according to Eq. (2.4.16), as illustrated in Fig. 6.5. However, the light which is not reflected due to the impedance mismatch – caused by the step in the dielectric constant or refractive index – is transmitted with almost no attenuation: α 0 and k 0 for ω 0. In contrast to XS(ω), which increases linearly with frequency up to ω0, for ω 0 the surface resistance RS(ω) approaches the constant value Z0/n according to Eq. (2.3.34a).

Absorption range

As soon as the frequency approaches the center frequency, electrons can be excited across the bandgap. Thus the vicinity of the oscillator frequency ω0 is characterized by strong absorption due to the large conductivity σ1 (although the loss function Im{1/ ˆ} does not indicate any change by entering this spectral range). The width

146

6 Semiconductors

Energy loss function 1 / ε

101

γ

= 50 cm1

 

 

 

 

 

 

 

 

 

ν0

= 100 cm1

 

 

ν0

 

Re

1

 

100

νp = 500 cm1

 

 

 

ε

 

 

 

 

 

 

101

 

 

 

 

 

 

 

 

 

 

102

10

 

 

 

 

 

νp

 

 

 

 

 

Im

1

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

1

 

 

3

ε

 

 

 

 

Im

 

10

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

ε

 

 

 

 

 

 

 

 

 

 

 

 

104

2

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

Re

1

 

 

 

 

 

 

 

4

 

ε

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

105

0

200

400

600

 

800

 

 

 

 

 

100

 

101

102

103

104

105

 

101

 

Frequency ν (cm1)

Fig. 6.7. Real and imaginary parts, Re{1/ˆ} and Im{1/ˆ}, of the frequency dependent loss function. The imaginary part peaks at νp and Re{1/ˆ} shows an anti-resonance-like shape. The inset shows the behavior on linear scales.

of the absorption range is characterized by the damping rate: 0 1/2τ ) < ω < (ω0 + 1/2τ ); it is the full width at half the conductivity maximum. As seen in Fig. 6.3 the real part of the dielectric constant crosses zero at ω0 with negative slope, and it comes back to positive values at ωp. Between the two extrema of

the dielectric constant at ωextr = ω0 ± 1/2τ (in the case of small damping) the dispersion is negative. As displayed in the figures, most optical quantities, such as

the refractive index n, the reflectivity R(ω), or Re{1/ ˆ(ω)}, exhibit strong changes in this range.

Reflection range

The third frequency range, between 0 + 1/τ ) and ωp, is characterized by a high and almost frequency independent reflectivity; the phase angle, however, varies strongly, as displayed in Fig. 6.5. At the oscillator frequency ω0 and at the plasma frequency ωp the curvature of the reflectivity changes. We have already mentioned that the Drude model is a special case of the Lorentz model with ω0 = 0; hence the reflection range corresponds to the relaxation regime in the former limit. The

6.1 The Lorentz model

147

conductivity drops as

 

 

 

σ1(ω) (ωτ )2

and

σ2(ω) (ωτ )1 .

(6.1.20)

Similar considerations hold for the dielectric constant:

1(ω) 1

ωp2

and

2(ω)

ωp2

;

(6.1.21)

ω2

ω3τ

both decrease with increasing frequency; of course 1 is still negative.

It is only in this spectral range that the extinction coefficient k which describes the losses of the system is larger than the refractive index n (Fig. 6.4). Similarly, for the surface impedance, the absolute value of the surface reactance XS becomes larger than the surface resistance RS in the range above the center frequency of the oscillator ω0 but still below the plasma frequency ωp, as displayed in Fig. 6.6. The surface resistance exhibits a minimum in the range of high reflectivity because of the phase change between the electric and magnetic fields.

Transparent regime

Finally, at frequencies above ωp, transmission is again important, for the same reasons as discussed in the case of the Drude model. Since k is small, the optical properties such as reflectivity or surface impedance are dominated by the behavior of n(ω). The high frequency dielectric constant 1→ ∞) = approaches unity from below, thus the reflectivity drops to zero above the plasma frequency, and the material becomes transparent. The imaginary part of the energy loss function 1/ ˆ(ω) plotted in Fig. 6.7 is only sensitive to the plasma frequency, where it peaks. The real part

Re

(ω)

=

12(ω)

 

22

(ω)

 

1

 

 

1

(ω)

 

 

ˆ

 

+

 

 

shows a zero-crossing at ωp and at ω0.

As expected, all the sum rules derived in Section 3.2.2 also apply to the Lorentz model. If 1is small compared to ω0, the spectral weight is obtained by substituting the expression (6.1.18b) of the imaginary part of the dielectric constant into Eq. (3.2.27):

0

ω 2(ω) dω =

ω2

0

 

 

 

ω2

 

 

 

 

 

 

 

 

p

 

 

 

 

dω

 

 

τ

 

0 ω)20 + ω)2 + ω22

 

 

 

 

ω2

0

 

 

dω

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

τ

40 ω)2 + 12

 

 

 

 

 

 

 

 

 

 

ωp2τ

 

 

 

 

 

 

ω2

π 2π 2 N e2

 

 

=

 

 

arctan{2

0

ω)τ

=

 

 

 

 

 

.

 

τ

 

 

 

 

 

m

 

 

 

 

} |0

 

p 2 =