Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Schechter Minimax Systems and Critical Point Theory (Springer, 2009)

.pdf
Скачиваний:
41
Добавлен:
22.08.2013
Размер:
2.13 Mб
Скачать

180

 

 

 

 

 

 

 

 

 

15.

Weak Sandwich Pairs

B is bounded in E

, vk

u weakly in E and (10.5) implies that

Since ˆ

 

 

 

 

 

 

 

 

 

(15.19)

 

 

(G (vk ), h(u)) (G (u), h(u)) 2δ

 

 

 

 

 

 

 

 

 

 

 

B be the set B with the inherited

in view of (15.14). This contradicts (15.17). Let ˜

ˆ

topology of

E. It is a metric space, and W

(

u

)

B is an open set in this space. Thus,

˜

˜

 

 

 

 

˜

˜

{W (u) ˜ },

u

 

 

 

 

 

 

 

B

 

B, is an open covering of the paracompact space B (cf., e.g., [77]).

Consequently, there is a locally finite refinement {Wτ } of this cover. For each τ, there is an element uτ such that Wτ W (uτ ). Let {ψτ } be a partition of unity subordinate to this covering. Each ψτ is locally Lipschitz continuous with respect to the norm |u|w and consequently with respect to the norm of E. Let

(15.20)

 

 

 

 

 

 

 

Y (u) =

ψτ (

)

(

u

τ ),

 

u

˜ .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u

h

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

Then Y (u) is locally Lipschitz continuous with respect to both norms. Moreover,

 

 

 

 

(15.21)

 

 

 

 

 

 

 

Y (u)

 

ψτ (u) h(uτ ) 1

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

(G (u), Y (u))

 

 

τ

 

 

 

 

 

 

 

τ

 

 

 

 

 

 

 

 

(15.22)

 

 

 

 

 

 

 

ψ

 

(u)(G (u), h(u

 

))

 

δ,

u

 

B.

 

 

 

 

 

For u

 

¯

 

ˆ

, let σ (t)u be the solution of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(15.23)

 

 

 

 

 

 

σ (t) = −Y (σ (t)),

 

t 0,

 

σ (0) = u.

 

 

 

 

 

 

 

 

Note that

σ ( )

u will exist as long as

σ (t)u is in

 

ˆ

 

 

 

 

 

 

 

 

 

 

(

u

,

t

)

 

t

 

 

 

 

 

 

B. Moreover, it is continuous in

 

 

 

with respect to both topologies.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

 

 

 

 

0

 

Next, we note that if u

 

¯ ˆ

 

 

 

 

 

 

 

 

 

σ (t)u

 

 

 

 

 

δ

 

 

E, we cannot have

 

B and G(σ (t)u) > b

 

 

 

for 0 t T : for by (15.23), (15.22),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(15.24)

 

 

 

 

dG(σ (t)u)/dt = (G (σ ), σ ) = −(G (σ ), Y (σ )) ≤ −δ

 

 

 

 

 

 

as long as

 

σ ( )

u

 

ˆ

 

 

σ ( )

u

 

 

ˆ

 

 

 

t

T , we would have

 

 

 

 

 

 

t

 

 

B. Hence, if

t

 

B for 0

 

 

 

 

 

 

 

(15.25)

 

 

 

 

 

 

G(σ (T )u) G(u) ≤ −δT = −(a0 b0 + 4δ).

 

 

 

 

 

 

 

 

Thus, we would have G(σ (T )u) < b0 4δ. On the other hand, if σ (s)u exists for

0

s

<

T

,

then

σ (t)u

ˆ

 

 

 

 

 

 

B. To see this, note that

 

 

 

 

 

 

 

 

 

 

t

 

(15.26)

 

 

 

u σ (t)u = zt (u) :=

0

Y (σ (s)u)ds.

By (15.21),

 

 

 

 

 

(15.27)

 

 

 

 

zt (u) t.

 

Consequently,

 

 

 

 

(15.28)

 

 

 

 

σ (t)u u + t < R.

15.2. Weak sandwich pairs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

181

Thus,

σ ( )

u

 

ˆ

 

 

 

 

 

 

 

 

 

¯

ˆ

, there is a t

0 such

t

 

B. We can now conclude that for each u

 

 

 

E

 

that σ (s)u exists for 0 s t and G(σ (t)u) b0 δ. Let

 

¯

ˆ

 

 

(15.29)

 

 

u

= {

0 : G

(σ ( )

u

)

b

0 δ},

 

u

 

 

 

 

T

: inf t

 

t

 

 

 

 

 

 

E.

 

 

Then σ (t)u exists for 0 t Tu and Tu < T . Moreover, Tu is continuous in u. Define

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σˆ (t)u =

 

 

σ (t)u,

 

 

 

 

 

 

0 t Tu,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σ (Tu )u,

 

 

 

Tu t T,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

ˆ

 

 

 

 

 

 

 

¯

\

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

 

 

 

 

 

 

 

 

 

for u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

 

 

 

 

 

 

=

u, 0

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. For u

 

 

 

 

 

 

E, define σ (t)u

 

 

 

 

 

 

 

T . Then σ (t)u is continuous

in (u, t), and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(15.30)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

 

T

 

u

 

 

b

 

 

δ,

 

u

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(σ (

)

)

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

ˆ

 

 

 

 

 

 

 

 

 

v

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(15.31)

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕ(v, t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

t

 

 

T.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fσ (t)v,

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯

 

×

[0

,

T ] to N. Let

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then ϕ is a continuous map of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

= {

(u, t)

: u

= ˆ

 

 

 

 

 

 

 

 

¯

,

 

t

 

[0,

T ]

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σ (t)v, v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then K

is a compact subset of

 

E

×

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

be any sequence in K

 

 

 

 

 

˜

 

 

 

. To see this, let (uk ,

k )

 

 

 

 

 

 

 

 

 

 

 

 

 

.

Then u

k = σ ( k )vk ,

where

vk

 

¯ .

 

Since Q is bounded, there is a subsequence such

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

Q

 

 

that vk v0

weakly in E and t

k t0 in [0, T ]. Since

Q is convex and bounded,

v0

is

− |

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Q and

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

×

R

 

 

we have

 

 

 

 

 

 

 

 

 

 

¯

 

 

 

 

vk

 

 

 

v0 w

 

 

 

 

0. Since σ (t) is continuous in

 

˜

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

ˆ

 

 

 

 

 

 

 

 

 

 

uk = σˆ (tk )vk σˆ (t0)v0 = u0 K .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

u

0)

 

 

 

˜

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

u

0)

 

 

 

 

B has a neighborhood W

 

 

 

 

 

 

in E and a finite-dimensional subspace S

 

 

such that Y

(

u

)

 

 

(

u

0) for u

 

 

 

W (u0)

 

 

 

 

ˆ .

Since

σ (

)

u is continuous in

(

u

,

t

),

for each

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

ˆ

t

 

 

 

 

 

t

 

 

 

K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

R and a finite-dimensional

(u0,

0)

 

 

 

, there are a neighborhood W (u0, t0)

 

 

˜ ×

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

subspace S(u0, t0) E such that zˆt (u) S(u0, t0) for (u, t) W (u0, t0), where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u

ˆ ,

 

 

 

 

 

 

 

 

 

 

(15.32)

 

 

 

 

 

 

 

 

zˆt (u) := u σˆ (t)u =

 

 

0 Y (σ (s)u)ds,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u

ˆ .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

Since K is compact, there are a finite number of points (u j , t j ) K such that K

W = W (u j , t j ). Let S be a finite-dimensional subspace of E containing p and all

the S(u

j ,

t

j )

and such that F S

= {

0

}

. Then, for each

v ¯

ˆt

(v)

 

S.

 

 

 

 

 

 

, we have z

 

By hypothesis, there is a finite-dimensional subspace S0

= {0} of N containing p such

that F(v

− ˆt (v)) 0

 

v

¯

0

¯

0 ×

[0, T ]

 

 

z

S for all

 

 

 

 

 

S . We note that

ϕ(u, t) maps

S

 

into S0. For t in [0, T ], let ϕt (v) = ϕ(v, t). Then

 

 

 

 

 

(15.33)

 

 

 

 

ϕt (v) = p,

v ∂ ( S0) = S0, 0 t T.

 

 

 

 

To see this, note that if v ∂ , then

 

 

 

 

 

 

 

 

 

 

 

 

 

v p v Fσˆ (t)v + Fσˆ (t)v p .

 

 

 

 

182

 

 

 

 

 

 

 

 

 

 

 

 

15. Weak Sandwich Pairs

Hence,

 

 

 

 

 

 

 

 

 

 

 

 

 

(15.34)

Fσˆ (t)v p > K T + δ t K > 0,

v ∂ , 0 t T

since

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

(s)v

 

 

 

 

 

 

Fσ (t)v

v

K

 

σ

 

ds

K t.

 

ˆ

 

 

0

ˆ

 

 

 

Thus, (15.33) holds. Consequently, the Brouwer degree dt , S0, p) is defined. Since ϕt is continuous, we have

(15.35)

dT , S0, p) = d0, S0, p) = d(I, S0, p) = 1.

=

 

Hence, there is a v

 

ˆ

=

ˆ

 

F

1( p)

B.

 

such that Fσ (T )v

 

p. Consequently, σ (T )v

 

 

In view of (15.7), this implies

Gˆ (T )v) b0,

contradicting (15.30). Thus, (15.8) holds, and the proof is complete.

We can now give the proof of Theorem 15.2.

Proof. We take A = N, B = M, p = 0, and F = PN , the projection onto N. If S is a finite-dimensional subspace such that F S = {0}, we take S0 = F S. All of the hypotheses of Theorem 15.4 are satisfied.

Definition 15.5. Let E, F be Banach spaces. We shall call a map J C(E, F) weak- to-weak continuous if, for each sequence

(15.36)

uk u weakly in E,

there exists a renamed subsequence such that

(15.37)

J (uk ) J (u) weakly in F.

We have

 

Proposition 15.6. If A, B is a weak sandwich pair and J is a weak-to-weak continuous diffeomorphism on the entire space having a derivative J (u) depending compactly on u and satisfying

(15.38)

J (u)1 C, u E,

then JA, JB is a weak sandwich pair.

Proof. Let G be a weak-to-weak continuously differentiable functional on E satisfying

(15.39)

−∞ < b0

:= J B

a0

:= J A

< .

 

 

inf G

 

sup G

 

Let

G1(u) = G( J u),

u E.

 

 

 

15.2. Weak sandwich pairs

183

Then

(G1(u), h) = (G ( J u), J (u)h).

If uk u weakly, then there is a renamed subsequence such that

J (uk )

J (u) weakly

J (uk )

J

(u).

 

;

 

 

 

Hence,

(G1(uk ), h) (G ( J u), J (u)h),

and G1 is weak-to-weak continuously differentiable. Moreover,

(15.40)

−∞ < b0

:= J B

= J u J B

(

J u

) =

B

1

 

inf G

inf G

 

inf G

 

 

 

 

 

 

 

 

 

 

 

a0

:= sup G = sup

G( J u) = sup G1 < .

 

 

J A

J u J A

 

 

 

A

 

Since A,

B form a weak sandwich pair, there is a sequence {hk } E such that

(15.41)

G1(hk )

c,

b0

c

a0

, G (hk )

0.

 

 

 

 

 

 

1

 

If we set uk = J hk , this becomes

 

 

 

 

 

 

 

 

(15.42)

G(uk ) c,

b0 c a0,

 

G (uk ) J (hk ) 0.

In view of (15.38), this implies G (uk ) 0. Thus, J A, J B is a sandwich pair.

Proposition 15.7. Let N be a closed subspace of a Hilbert space E with complement M = M {v0}, where v0 is an element in E having unit norm, and let δ be any positive number. Let ϕ(t) C1(R) be such that

0 ϕ(t) 1, ϕ(0) = 1,

 

and

 

ϕ(t) = 0, |t| ≥ 1.

 

Let

 

(15.43) F(v + w + sv0) = v + [s + δ δϕ( w 22)]v0,

v N, w M, s R.

Then A = N = N {v0}, B = F1(δv0) forms a weak sandwich pair.

Proof. Define

 

J (v + w + sv0) = v + w + [s δ + δϕ( w 22)]v0,

v N, w M, s R.

Then J is a diffeomorphism on E satisfying the hypotheses of Proposition 15.6. Moreover, A = J N and B = J [M + δv0]. Since N and M + δv0 form a weak sandwich pair by Theorem 15.2, we see that A, B also form a weak sandwich pair (Proposition 15.6).

184 15. Weak Sandwich Pairs

15.3 Applications

Let A, B be positive, self-adjoint operators on L2( ) with compact resolvents, whereRn . Let F(x, v, w) be a Carath´eodory function on × R2 such that

(15.44)

f (x, v, w) = F/∂ v, g(x, v, w) = F/∂ w

are also Carath´eodory functions satisfying

(15.45)

| f (x, v, w)| + |g(x, v, w)| ≤ C0(|v| + |w| + 1), v, w R,

and

 

(15.46)

f (x, t y, tz)/t α+(x)v+ α(x)v+ β+(x)w+ β(x)w,

(15.47)

g(x, t y, tz)/t γ+(x)v+ γ(x)v+ δ+(x)w+ δ(x)w

as t → +∞, y v, z w, where a± = max(±a, 0). We wish to solve the system

(15.48)

Av = − f (x, v, w)

(15.49)

Bw = g(x, v, w).

Let λ00) be the lowest eigenvalue of A(B). We assume that the only solution of

(15.50)

Av = α+v+ αv+ β+w+ βw,

(15.51)

Bw = γ+v+ γv+ δ+w+ δw

is v = w = 0. Our first result is

 

Theorem 15.8. Assume

 

(15.52)

2F(x, s, 0) ≥ −λ02 W1(x),

x , t R,

and

 

 

(15.53)

2F(x, 0, t) μ0t2 + W2(x),

x , t R,

where Wi (x) L1( ). Then the system (15.48), (15.49) has a solution.

Proof. Let D = D( A1/2) × D(B1/2). Then D becomes a Hilbert space with norm given by

(15.54)

u 2D = ( Av, v) + (Bw, w), u = (v, w) D.

We define

 

 

(15.55)

G(u) = b(w) a(v) 2

F(x, v, w)dx, u D,

where

 

 

(15.56)

a(v) = ( Av, v),

b(w) = (Bw, w).

15.3. Applications

185

Then G C1(D, R) and

 

(15.57)

(G (u), h)/2 = b(w, h2) a(v, h1) ( f (u), h1) (g(u), h2),

 

where we write f (u), g(u) in place of f (x, v, w), g(x, v, w), respectively. It is readily seen that the system (15.48), (15.49) is equivalent to

(15.58)

G (u) = 0.

We let N be the set of those (v, 0) D and M the set of those (0, w) D. Then M, N are orthogonal closed subspaces such that

(15.59)

D = M N.

If we define

 

(15.60)

Lu = 2(v, w), u = (v, w) D,

then L is a self-adjoint, bounded operator on D. Also,

(15.61)

G (u) = Lu + c0(u),

where

 

(15.62)

c0(u) = −( A1 f (u), B1g(u))

is compact on D. This follows from (15.45) and the fact that A and B have compact resolvents. It also follows that G has weak-to-weak continuity, for if uk u weakly, then Luk Lu weakly and c0(uk ) has a convergent subsequence. Now, by (15.53),

(15.63)

G(0, w) b(w) μ0 w 2

 

 

W2(x) dx,

(0, w) M.

Thus,

 

 

 

 

 

 

 

 

 

 

 

 

(15.64)

M

≥ −

 

 

(

x

)

dx

b

0.

 

inf G

 

W

 

 

 

 

 

On the other hand, (15.52) implies

 

 

 

 

 

 

 

 

 

 

(15.65)

G(v, 0) ≤ −a(v) + λ0 v 2 +

W1(x) dx,

(v, 0) N.

Thus,

 

 

 

 

 

 

 

 

 

 

 

 

(15.66)

sup G

W1

(x) dx a0.

 

 

N

 

 

 

 

 

 

 

 

 

 

 

We can now apply Theorem 15.2 to conclude that there is a sequence {uk } D such that (15.8) holds. Let uk = (vk , wk ). I claim that

(15.67)

ρk2 = a(vk ) + b(wk ) C,

186

 

 

 

 

 

15. Weak Sandwich Pairs

for assume that

ρk → ∞

˜k =

u

k

2k

 

, and let u

 

. Then there is a renamed subsequence

such that u˜k u˜ weakly in D, strongly in L ( ), and a.e. in . If h = (h1, h2) D, then

(15.68)

(G (uk ), h)/ρk = 2b(w˜ k, h2) 2a(v˜k , h1) 2( f (uk ), h1)/ρk 2(g(uk ), h2)/ρk .

Taking the limit and applying (15.45)–(15.47), we see that u˜ = (v˜, w)˜ is a solution of (15.50), (15.51). Hence, u˜ = 0 by hypothesis. On the other hand, since a(v˜k ) +

b

(wk ) 1, there is a renamed subsequence such that a(vk )

 

a, b(wk )

 

b with

a

 

 

˜

 

˜

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˜

→ ˜

 

 

˜

 

˜ +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˜ b

=1. Thus, by (15.46), (15.47), and (15.57),

 

 

 

 

 

 

 

 

 

 

 

(G (u

), (v

, 0))/2ρ

 

 

 

a(v

 

)

( f (u

 

), v

 

)/ρ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

˜k

 

 

k = −

˜k

 

 

 

 

k

 

 

 

˜k

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

(α v+

α v

+

β

w+

β

w)v dx

 

 

 

 

 

 

 

 

 

→ − ˜ −

 

 

 

+

˜

 

 

 

˜

 

 

+ ˜

 

 

˜ ˜

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(G (u

 

), (0, w

))/2ρ

=

b(w

 

)

(g(u

), w

)/ρ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

˜ k

 

 

k

˜ k

 

 

 

 

k

 

 

 

 

˜ k

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

v

+

 

γ

 

v

+

δ

w+

δ

w)w dx.

 

 

 

 

 

 

 

 

 

 

˜

 

 

 

 

+ ˜

 

 

 

 

˜

 

 

+

˜

 

˜ ˜

 

Thus, by (15.8),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(15.69)

 

 

a

 

 

(α v

+

α

v

+

β

 

 

w+

 

β

 

w)v dx

 

 

 

 

 

 

 

 

 

 

˜ = −

 

 

+

˜

˜

 

 

 

+

˜

 

 

˜ ˜

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(15.70)

 

 

b

 

 

v+

γ

v

+

δ

 

 

w+

δ

 

w)w dx.

 

 

 

 

 

 

 

 

 

 

 

˜ =

 

 

+ ˜

 

 

 

 

˜

 

 

+

˜

 

 

˜ ˜

 

 

 

 

˜ ≡

 

 

 

 

 

 

 

 

 

 

 

˜

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0. This

 

 

 

 

 

 

 

 

 

 

 

 

b is not zero, we see that we cannot have u

 

Since one of the two numbers a,

˜

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

contradiction proves (15.67). Once this is known, we can use the usual procedures to show that there is a renamed subsequence such that uk u in D, and u satisfies (15.58).

Theorem 15.9. In addition, assume that the eigenfunctions of λ0 and μ0 are bounded and nonzero a.e. in and that there is a q > 2 such that

(15.71)

w q2 Cb(w),

w M.

Assume

 

 

(15.72)

2F(x, 0, t) μ(x)t2,

x , t R,

where

 

 

(15.73)

μ(x) ≤≡ μ0,

x ,

and for some δ > 0,

 

 

(15.74)

2F(x, s, t) μ0t2 λ0s2, |t| + |s| ≤ δ.

Then the system (15.48), (15.49) has a nontrivial solution.

15.3. Applications

187

Proof. Let N be the orthogonal complement of N0 = {ϕ0} in N, where ϕ0 is the eigenfunction of A corresponding to λ0. Then N = N N0. Let M0 be the subspace of M spanned by the eigenfunctions of B corresponding to μ0, and let M be its orthogonal complement in M. Since N0 and M0 are contained in L( ), there is a positive constant ρ such that

(15.75)

 

a(y) ρ2 y δ/4,

y N0,

 

(15.76)

 

b(h) ρ2 h δ/4,

h M0,

 

where δ is the number given in (15.74). If

 

 

(15.77)

a(y) ρ2, b(w) ρ2, |y(x)| + |w(x)| ≥ δ,

we write w = h + w , h M0, w M and

 

 

(15.78)

δ ≤ |y(x)| + |w(x)| ≤ |y(x)| + |h(x)| + |w (x)| ≤ (δ/2) + |w (x)|.

Thus,

 

 

 

 

 

 

 

(15.79)

 

 

 

|y(x)| + |h(x)| ≤ δ/2 ≤ |w (x)|

 

and

 

 

 

 

 

 

 

(15.80)

 

 

 

|y(x)| + |w(x)| ≤ 2|w (x)|.

 

Now, by (15.74) and (15.80),

 

 

 

G(y, w) = b(w) a(y) 2

F(x, y, w) dx

 

 

 

b(w) a(y)

{μ0w2 λ0 y2}dx

 

 

 

 

 

|y|+|w|

 

 

 

c0

 

 

(|y| + |w| + 1)2 dx

 

 

 

|y|+|w|

 

 

 

 

b(w) a(y) μ0 w 2 + λ0 y 2 c1

|w |q dx

 

 

 

 

 

 

2|w |

 

 

b(w ) μ0 w 2 c2b(w )q/2

 

 

 

 

 

μ0

 

 

 

 

1

 

 

c2b(w )(q/2)1 b(w ),

a(y) ρ2, b(w) ρ2,

 

 

μ1

where μ1 is the next eigenvalue of B after μ0. If we reduce ρ accordingly, we can find a positive constant ν such that

(15.81)

G(y, w) νb(w ), a(y) ρ2, b(w) ρ2.

188

15. Weak Sandwich Pairs

I claim that either (15.48), (15.49) has a nontrivial solution or there is an > 0 such that

(15.82) G(y, w) , a(y) + b(w) = ρ2.

To see this, suppose (15.82) did not hold. Then there would be a sequence {yk , wk } such that a(yk ) + b(wk ) = ρ2 and G(yk , wk ) 0. If we write wk = wk + hk , wk

M , hk M0, then (15.81) tells us that b(wk ) 0. Thus, a(yk) + b(hk ) ρ2.

Since N0, M0 are finite-dimensional, there is a renamed subsequence such that yk y in N0 and hk h in M0. By (15.75) and (15.76), y δ/4 and h δ/4. Consequently, (15.74) implies

(15.83)

 

 

 

2F(x, y, h) μ0h2 λ0 y2.

Since

 

 

 

 

 

 

(15.84)

 

G(y, h) = b(h) a(y) 2

F(x, y, h)dx = 0,

we have

 

 

 

 

 

(15.85)

 

{2F(x, y, h) + λ0 y2 μ0h2}dx = 0.

In view of (15.83), this implies

 

(15.86)

 

 

 

2F(x, y, h) μ0h2 λ0 y2.

For ζ

 

C

0

 

 

 

 

( ) and t > 0 small, we have

 

(15.87)

 

2[F(x, y + tζ, h) F(x, y, h)]/t ≤ −λ0[(y + tζ )2 y2]/t.

Taking t 0, we see that

 

 

(15.88)

 

 

 

f (x, y, h≤ −λ0 yζ.

Since this is true for all ζ

0

 

 

C( ), we have

 

(15.89)

 

 

 

f (x, y, h) = −λ0 y = − Ay.

Similarly,

 

 

 

 

(15.90)

 

2[F(x, y, h + tζ ) F(x, y, h)]/t μ0[(h + tζ )2 h2]/t,

and, consequently,

 

 

 

(15.91)

 

 

 

g(x, y, hμ0hζ

and

 

 

 

 

 

 

(15.92)

 

 

 

g(x, y, h) = μ0h = Bh.

15.3. Applications

189

We see from (15.89) and (15.92) that (15.48), (15.49) has a nontrivial solution. Thus, we may assume that (15.82) holds.

Next, we note that there is an ε > 0 depending on ρ such that

 

 

 

G(0, w) ε, b(w) ρ > 0.

To see this, suppose that {wk } M is a sequence such that

 

 

 

G(0, wk ) 0, b(wk ) ρ.

If

 

 

bk = b(wk ) C,

this implies

b(wk ) μ0 wk 2 0

and

 

 

 

 

 

 

 

 

 

[μ0 μ(x)]wk2 dx 0

since

 

G(0, w) b(w) μ0 w 2 +

[μ0 μ(x)]w2dx, w M.

 

 

If we write wk = wk

+ hk , wk M , hk

M0 as before, then this tells us that

k

0. Since M0

is finite-dimensional, there is a renamed subsequence such that

b(w )

 

hk h. But the two conclusions above tell us that h = 0. Since b(h) ρ, we see

exists for any constant C. If the sequence

b

k } is not bounded, we take

that ε > 0 1/2

 

{

w˜ k = wk /bk

. Then

 

 

G(0, wk )/bk b(w˜ k ) μ0 w˜ k 2 + [μ0 μ(x)](w˜ k)2dx.

Next, we note that there is a ν > 0 such that

 

 

(15.93)

G(0, w) νb(w), w M.

 

Assuming this for the moment, we see that

 

 

(15.94)

B G ε1 > 0,

 

 

inf

 

 

where

 

 

 

(15.95) B = {w M : b(w) ρ2} {u = (sϕ0, w) : s 0, w M, u D = ρ},

and ε1 = min{ε, νρ2}. By (15.66), there is an R > ρ such that

(15.96)

sup G = a0 < ,

 

 

 

A

 

 

where A = N. By Proposition 15.7, A, B form a weak sandwich pair. Moreover, G satisfies (15.7) with ε1 b0. Hence, there is a sequence {uk } D such that (15.8)

Соседние файлы в предмете Экономика