Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Гистология

.pdf
Скачиваний:
10019
Добавлен:
31.03.2015
Размер:
45.04 Mб
Скачать

зуются заполненные материнской кровью лакуны, в которые свободно свисают ворсины хориона.

Глубокие неразрушенные части отпадающей оболочки вместе с трофобластом образуют базальную пластинку.

Базалъный слой эндометрия (lamina basalis) — соединительная ткань слизистой оболочки матки, содержащая децидуальные клетки. Эти крупные, богатые гликогеном клетки соединительной ткани расположены в глубоких слоях слизистой оболочки матки. Они имеют четкие границы, округлые ядра и оксифильную цитоплазму. В течение 2-го месяца беременности децидуальные клетки значительно укрупняются. В их цитоплазме, кроме гликогена, выявляются липиды, глюкоза, витамин С, железо, неспецифические эстеразы, дегидрогеназа янтарной и молочной кислот. В базальной пластинке, чаще в месте прикрепления ворсин к материнской части плаценты, встречаются скопления клеток периферического цитотрофобласта. Они напоминают децидуальные клетки, но отличаются более интенсивной базофилией цитоплазмы. Аморфная субстанция (фибриноид Рора) находится на поверхности базальной пластинки, обращенной к хориальным ворсинам. Фибриноид играет существенную роль в обеспечении иммунологического гомеостаза в системе мать — плод.

Часть основной отпадающей оболочки, расположенной на границе ветвистого и гладкого хориона, т.е. по краю плацентарного диска, при развитии плаценты не разрушается. Плотно прирастая к хориону, она образует замыкающую пластинку, препятствующую истечению крови из лакун плаценты.

Кровь в лакунах непрерывно циркулирует. Она поступает из маточных артерий, входящих сюда из мышечной оболочки матки. Эти артерии идут по плацентарным перегородкам и открываются в лакуны. Материнская кровь оттекает от плаценты по венам, берущим начало от лакун крупными отверстиями.

Формирование плаценты заканчивается в конце 3-го месяца беременности. Плацента обеспечивает питание, тканевое дыхание, рост, регуляцию образовавшихся к этому времени зачатков органов плода, а также его защиту.

Функции плаценты. Основные функции плаценты: 1) дыхательная, 2) транспорт питательных веществ, воды, электролитов и иммуноглобулинов, 3) выделительная, 4) эндокринная, 5) участие в регуляции сокращения миометрия.

Дыхание плода обеспечивается за счет кислорода, присоединенного к гемоглобину материнской крови, который путем диффузии поступает через плаценту в кровь плода, где он соединяется с фетальным гемоглобином (HbF). Связанная с фетальным гемоглобином С02 в крови плода также диффундирует через плаценту, поступает в кровь матери, где соединяется с материнским гемоглобином.

Транспорт всех питательных веществ, необходимых для развития плода (глюкоза, аминокислоты, жирные кислоты, нуклеотиды, витамины, минеральные вещества), происходит из крови матери через плаценту в кровь плода, и, наоборот, из крови плода в кровь матери поступают продукты обмена веществ, выводимые из его организма (выделительная функция). Электролиты и вода проходят через плаценту путем диффузии и с помощью пиноцитоза.

132

В транспорте иммуноглобулинов (Ig) участвуют пиноцитозные везикулы симпластотрофобласта. Поступивший в кровь плода Ig пассивно иммунизирует его от возможного действия бактериальных антигенов, которые могут поступать при заболеваниях матери. После рождения материнский Ig разрушается и заменяется вновь синтезируемым Ig в организме ребенка при действии на него бактериальных антигенов. Через плаценту в околоплодные воды проникают Ig класса G и A (IgG, IgA).

Эндокринная функция является одной из важных, так как плацента обладает способностью синтезировать и секретировать ряд гормонов, обеспечивающих взаимодействие зародыша и материнского организма на протяжении всей беременности. Местом продукции плацентарных гормонов являются цитотрофобласт и особенно симпластотрофобласт, а также децидуальные клетки.

Одним из первых плацента синтезирует х о р и о н и ч е с к и й г о н а д о - тропин, концентрация которого быстро нарастает на 2—3-й неделе беременности, достигая максимума на 8—10-й неделе, причем в крови плода она в 10—20 раз выше, чем в крови матери. Гормон стимулирует образование адренокортикотропного гормона (АКТГ) гипофиза, усиливает секрецию кортикостероидов.

Большое значение в развитии беременности имеет

п л а ц е н т а р н ы й

лактоген, который обладает активностью пролактина

и лютеотропного

гормона гипофиза. Он поддерживает стероидогенез в желтом теле яичника в первые 3 мес беременности, а также принимает участие в метаболизме углеводов и белков. Концентрация его в крови матери прогрессивно нарастает на 3—4-м месяце беременности и в дальнейшем продолжает увеличиваться, достигая максимума к 9-му месяцу. Этот гормон совместно с пролактином гипофиза матери и плода играет определенную роль в продукции легочного сурфактанта и фетоплацентарной осморегуляции. Высокая концентрация его обнаруживается в околоплодных водах (в 10—100 раз больше, чем в крови матери).

В хорионе, а также в децидуальной оболочке синтезируются прогес - терон и прегнандиол .

Прогестерон (вырабатываемый сначала желтым телом в яичнике, а с 5—6-й недели в плаценте) подавляет сокращения матки, стимулирует ее рост, оказывает иммунодепрессивное действие, подавляя реакцию отторжения плода. Около 3/4 прогестерона в организме матери метаболизируется и трансформируется в эстрогены, а часть выделяется с мочой.

Эстрогены (эстрадиол, эстрон, эстриол) вырабатываются в симпластотрофобласте ворсин плаценты (хориона) в середине беременности, а к концу беременности их активность усиливается в 10 раз. Они вызывают гиперплазию и гипертрофию матки.

Кроме того, в плаценте синтезируются меланоцитостимулирующий и адренокортикотропный гормоны, соматостатин и др.

В плаценте содержатся полиамины (спермин, спермидин), влияющие на усиление синтеза РНК в гладких мышечных клетках миометрия, а также на разрушающие их оксидазы. Важную роль играют аминооксидазы (гистаминаза, моноаминоксидаза), разрушающие биогенные амины — гистамин, серотонин, тирамин. Во время беременности их активность возрастает, что способствует разрушению биогенных аминов и падению концентрации последних в плаценте, миометрии и крови матери.

133

Во время родов гистамин и серотонин являются наряду с катехоламинами (норадреналин, адреналин) стимуляторами сократительной деятельности гладких мышечных клеток (ГМК) матки, и к концу беременности их концентрация значительно возрастает в связи с резким падением (в 2 раза) активности аминооксидаз (гистаминаза и др.).

При слабой родовой деятельности отмечается усиление активности аминооксидаз, например гистаминазы (в 5 раз).

Нормальная плацента не является абсолютным барьером для белков. В частности, а-фетопротеин в конце 3-го месяца беременности проникает в небольшом количестве (около 10 %) из плода в кровь матери, но на этот антиген материнский организм не отвечает отторжением, так как во время беременности уменьшается цитотоксичность материнских лимфоцитов.

Плацента препятствует прохождению ряда материнских клеток и цитотоксических антител к плоду. Главную роль в этом играет ф и б р и н о и д , покрывающий трофобласт при его частичном повреждении. Это предотвращает поступление в межворсинчатое пространство плацентарных и плодовых антигенов, а также ослабляет гуморальную и клеточную «атаку» матери против зародыша.

В заключение отметим основные особенности ранних стадий развития зародыша человека: 1) асинхронный тип полного дробления и образование «светлых» и «темных» бластомеров; 2) раннее обособление и формирование внезародышевых органов; 3) раннее образование амниотического пузырька и отсутствие амниотических складок; 4) наличие в стадии гаструляции двух механизмов — деламинации и иммиграции, в течение которых происходит также развитие провизорных органов; 5) интерстициальный тип имплантации; 6) сильное развитие амниона, хориона, плаценты и слабое развитие желточного мешка и аллантоиса.

Система мать — плод

Система мать — плод возникает в процессе беременности и включает в себя две п о д с и с т е м ы — организм матери и организм плода, а также плаценту, являющуюся связующим звеном между ними.

Взаимодействие между организмом матери и организмом плода обеспечивается прежде всего нейрогуморальными механизмами. При этом в обеих подсистемах различают следующие механизмы: рецепторные, воспринимающие информацию, регуляторные, осуществляющие ее переработку, и исполнительные.

Р е ц е п т о р н ы е м е х а н и з м ы о р г а н и з м а м а т е р и расположены в матке в виде чувствительных нервных окончаний, которые первыми воспринимают информацию о состоянии развивающегося плода. В эндометрии находятся хемо-, механо- и терморецепторы, а в кровеносных сосудах — барорецепторы. Рецепторные нервные окончания свободного типа особенно многочисленны в стенках маточной вены и в децидуальной оболочке в области прикрепления плаценты. Раздражение рецепторов матки вызывает изменения интенсивности дыхания, кровяного давления в организме матери, что обеспечивает нормальные условия для развивающегося плода.

Р е г у л я т о р н ы е м е х а н и з м ы о р г а н и з м а м а т е р и включают отделы ЦНС (височная доля мозга, гипоталамус, мезэнцефальный отдел ретикулярной формации), а также гипоталамо-эндокринную систему. Важную регуляторную функцию выполняют гормоны: половые, тироксин, кортикостероиды, инсулин и др. Так, во время беременности происходят усиление активности коры надпочечников матери и повышение выработки кортикостероидов, которые участвуют в регуляции мета-

134

болизма плода. В плаценте вырабатывается хорионический гонадотропин, стимулирующий образование АКТГ гипофиза, который активизирует деятельность коры надпочечников и усиливает секрецию кортикостероидов.

Регуляторные нейроэндокринные аппараты матери обеспечивают сохранение беременности, необходимый уровень функционирования сердца, сосудов, кроветворных органов, печени и оптимальный уровень обмена веществ, газов в зависимости от потребностей плода.

Р е ц е п т о р н ы е м е х а н и з м ы о р г а н и з м а п л о д а воспринимают сигналы об изменениях организма матери или собственного гомеостаза. Они обнаружены в стенках пупочных артерий и вены, в устьях печеночных вен, в коже и кишечнике плода. Раздражение этих рецепторов приводит к изменению частоты сердцебиения

плода, скорости кровотока в его сосудах, влияет на содержание сахара в крови

и

т. д.

да

Р е г у л я т о р н ы е н е й р о г у м о р а л ь н ы е м е х а н и з м ы о р г а н и з м а п л о -

формируются в процессе развития. Первые двигательные реакции у плода появ-

ляются на 2—3-м месяце развития, что свидетельствует о созревании нервных центров. Механизмы, регулирующие газовый гомеостаз, формируются в конце II триместра эмбриогенеза. Начало функционирования центральной эндокринной железы — гипофиза — отмечается на 3-м месяце развития. Синтез кортикостероидов в надпочечниках плода начинается со второй половины беременности и увеличивается с его ростом. У плода усилен синтез инсулина, который необходим для обеспечения его роста, связанного с углеводным и энергетическим обменом.

Действие нейрогуморальных регуляторных систем плода направлено на

и с п о л -

н и т е л ь н ы е м е х а н и з м ы — органы плода, обеспечивающие изменение

интен-

сивности дыхания, сердечно-сосудистой деятельности, мышечной активности и т.д. и на механизмы, определяющие изменение уровня газообмена, обмена веществ, терморегуляции и других функций.

В обеспечении связей в системе мать — плод особо важную роль играет плацента, которая способна не только аккумулировать, но и синтезировать вещества, необходимые для развития плода. Плацента выполняет эндокринные функции, вырабатывая ряд гормонов: прогестерон, эстроген, хорионический гонадотропин (ХГ), плацентарный лактоген и др. Через плаценту между матерью и плодом осуществляются гуморальные и нервные связи.

Существуют также экстраплацентарные гуморальные связи через плодные оболочки и амниотическую жидкость.

Гуморальный канал связи — самый обширный и информативный. Через него происходит поступление кислорода и углекислого газа, белков, углеводов, витаминов, электролитов, гормонов, антител и др. (рис. 51). В норме чужеродные вещества не проникают из организма матери через плаценту. Они могут начать проникать лишь в условиях патологии, когда нарушена барьерная функция плаценты. Важным компонентом гуморальных связей являются иммунологические связи, обеспечивающие поддержание иммунного гомеостаза в системе мать — плод.

Несмотря на то что организмы матери и плода генетически чужеродны по составу белков, иммунологического конфликта обычно не происходит. Это обеспечивается рядом механизмов, среди которых существенное значение имеют следующие: 1) синтезируемые симпластотрофобластом белки, тормозящие иммунный ответ материнского организма; 2) хориональный гонадотропин и плацентарный лактоген, находящиеся в высокой концентрации на поверхности симпластотрофобласта; 3) иммуномаскирующее действие гликопротеидов перицеллюлярного фибриноида плаценты, заряженного так же, как и лимфоциты омывающей крови, отрицательно; 4) про-

135

Критические периоды развития

В ходе онтогенеза, особенно эмбриогенеза, отмечаются периоды более высокой чувствительности развивающихся половых клеток (в период прогенеза) и зародыша (в период эмбриогенеза). Впервые на это обратил внимание австралийский врач Норман Грегг (1944). Российский эмбриолог П. Г. Светлов (1960) сформулировал теорию критических периодов развития и проверил ее экспериментально. Сущность этой теории заключается в утверждении общего положения, что каждый этап развития зародыша в целом и его отдельных органов начинается относительно коротким периодом качественно новой перестройки, сопровождающейся детерминацией, пролиферацией и дифференцировкой клеток. В это время эмбрион наиболее восприимчив к повреждающим воздействиям различной природы (рентгеновское облучение, лекарственные средства и др.). Такими периодами в прогенезе являются спермио- и овогенез (мейоз), а в эмбриогенезе — оплодотворение, имплантация (во время которой происходят гаструляция), дифференцировка зародышевых листков и закладка органов, период плацентации (окончательного созревания и формирования плаценты), становление многих функциональных систем, рождение.

Среди развивающихся органов и систем человека особое место принадлежит головному мозгу, который на ранних стадиях выступает в роли первичного организатора дифференцировки окружающих тканевых и органных зачатков (в частности, органов чувств), а позднее отличается интенсивным размножением клеток (примерно 20 ООО в минуту), что требует оптимальных условий трофики.

Повреждающими экзогенными факторами в критические периоды могут быть химические вещества, в том числе многие лекарственные, ионизирующее облучение (например, рентгеновское в диагностических дозах), гипоксия, голодание, наркотики, никотин, вирусы и др.

Химические вещества и лекарства, проникающие через плацентарный барьер, особенно опасны для зародыша в первые 3 мес беременности, так как они не метаболизируются и накапливаются в повышенных концентрациях в тканях и органах зародыша. Наркотики нарушают развитие головного мозга. Голодание, вирусы вызывают пороки развития и даже внутриутробную гибель.

Итак, в онтогенезе человека выделяют несколько критических периодов развития: в прогенезе, эмбриогенезе и постнатальной жизни. К ним относятся: 1) развитие половых клеток — овогенез и сперматогенез; 2) оплодотворение; 3) имплантация (7—8-е сутки эмбриогенеза); 4) развитие осевых зачатков органов и формирование плаценты (3—8-я неделя развития); 5) стадия усиленного роста головного мозга (15—20-я неделя); 6) формирование основных функциональных систем организма и дифференцировка полового аппарата (20—24-я неделя); 7) рождение; 8) период новорожденности (до 1 года); 9) половое созревание (11—16 лет).

О Б Щ А Я Г И С Т О Л О Г И Я

Г л а в а VI

ЭПИТЕЛИАЛЬНЫЕ ТКАНИ

Эпителиальные ткани — это совокупность дифферонов полярно дифференцированных клеток, тесно расположенных в виде пласта на базальной мембране, на границе с внешней или внутренней средой, а также образующих большинство желез организма. Различают поверхностные (покровные и выстилающие) и железистые эпителии.

Поверхностные эпителии — это пограничные ткани, располагающиеся на поверхности тела (покровные), слизистых оболочках внутренних органов (желудка, кишечника, мочевого пузыря и др.) и вторичных полостей тела (выстилающие). Они отделяют организм и его органы от окружающей их среды и участвуют в обмене веществ между ними, осуществляя функции поглощения веществ (всасывание) и выделения продуктов обмена (экскреция). Например, через кишечный эпителий всасываются в кровь и лимфу продукты переваривания пищи, которые служат источником энергии и строительным материалом для организма, а через почечный эпителий выделяется ряд продуктов азотистого обмена, являющихся шлаками. Кроме этих функций, покровный эпителий выполняет важную защитную функцию, предохраняя подлежащие ткани организма от различных внешних воздействий — химических, механических, инфекционных и др. Например, кожный эпителий является мощным барьером для микроорганизмов и многих ядов. Наконец, эпителий, покрывающий внутренние органы, создает условия для их подвижности, например для сокращения сердца, экскурсии легких и т. д.

Железистый эпителий, образующий многие железы, осуществляет секреторную функцию, т.е. синтезирует и выделяет специфические продукты — секреты, которые используются в процессах, протекающих в организме. Например, секрет поджелудочной железы участвует в переваривании белков, жиров и углеводов в тонкой кишке, секреты эндокринных желез — гормоны — регулируют многие процессы (роста, обмена веществ и др.).

Источники развития эпителиальных тканей. Эпителии развиваются из всех трех зародышевых листков, начиная с 3—4-й недели эмбрионального развития человека. В зависимости от эмбрионального источника различают эпителии эктодермального, мезодермального и энтодермального происхождения.

Родственные виды эпителиев, развивающиеся из одного зародышевого листка, в условиях патологии могут подвергаться метаплазии, т.е. переходить из одного вида в другой, например в дыхательных путях эктодер-

138

мальный эпителий при хронических бронхитах из однослойного реснитчатого может превратиться в многослойный плоский, который в норме характерен для ротовой полости и имеет также эктодермальное происхождение.

Поверхностные эпителии

Строение

Эпителии участвуют в построении многих органов, в связи с чем обнаруживают большое разнообразие морфофизиологических свойств. Некоторые из них являются общими, позволяющими отличать эпителии от других тканей организма1. Имеется 5 основных особенностей эпителиев.

Эпителии представляют собой пласты клеток — эпителиоцитов (рис. 52), которые имеют неодинаковую форму и строение в различных видах эпителия.

Между клетками, составляющими эпителиальный пласт, почти нет межклеточного вещества, и клетки тесно связаны друг с другом с помощью различных контактов — десмосом, промежуточных, щелевых и плотных соединений.

Эпителии располагаются на базальных мембранах (пластинках), которые образуются в результате деятельности как клеток эпителия, так и подлежащей соединительной ткани. Базальная мембрана имеет толщину около 1 мкм и состоит из подэпителиальной электронно-прозрачной светлой пластинки (lamina lucida) толщиной 20—40 нм и темной пластинки (lamina densa) толщиной 20— 60 нм (рис. 53). Светлая пластинка включает аморфное вещество, относительно бедное белками, но богатое ионами кальция. Темная пластинка имеет богатый белками аморфный матрикс, в который впаяны фибриллярные структуры (коллаген IV типа), обеспечивающие механическую прочность мембраны. В ее аморфном веществе содержатся сложные белки — гликопротеины, протеогликаны и углеводы (полисахариды) — гликозаминогликаны. Гликопротеины — фибронектин и ламинин — выполняют роль адгезивного субстрата, с помощью которого к мембране прикрепляются эпителиоциты. Важную роль при этом играют ионы кальция, обеспечивающие связь между адгезивными молекулами гликопротеинов базальной мембраны и полудесмосом эпителиоцитов. Кроме того, гликопротеины индуцируют пролиферацию и дифференцировку эпителиоцитов при регенерации эпителия. Протеогликаны и гликозаминогликаны создают упругость мембраны и характерный для нее отрицательный заряд, от которого зависит ее избирательная проницаемость для веществ, а также способность накапливать в условиях патологии многие ядовитые вещества (токсины), сосудоактивные амины и комплексы из антигенов и антител.

Особенно прочно клетки эпителия связаны с базальной мембраной в области гемидесмосом (полудесмосом). Здесь от плазмолеммы эпителиоцитов через светлую пластинку к темной пластинке базальной мембраны проходят «якорные» филаменты. В этой же области, но со стороны подлежащей соединительной ткани в темную

' Цитохимическим маркером эпителиоцитов является белок цитокератин, образующий промежуточные филаменты. В различных видах эпителиев он имеет различные молекулярные формы. Известно более 20 форм этого белка. Иммуногистохимическое выявление этих форм цитокератина позволяет определить принадлежность исследуемого материала к тому илй иному типу эпителиев, что имеет важное значение в диагностике опухолей.

139