Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ext_5251

.pdf
Скачиваний:
31
Добавлен:
27.03.2015
Размер:
6.26 Mб
Скачать

ГЛАВА 1. Введение в нанотехнологии

следующего за “информационным” в цепочке общественно исторических формаций.

Основы безопасности жизнедеятельности, возможно, станут одним из актуальнейших направлений будущих исследований.

Психологи и социологи будут решать множество вопросов, связанных с адаптацией всех “неподготвленных” к неожидан ным последствиям нанореволюции.

Возросшие требования к образованию, потребность в но вых методах и концепциях обучения потребует от будущих учи телей новаторства и активности.

Перед философами, экономистами и политологами встанет множество новых вопросов, требующих нетрадиционных ре шений в условиях нанотехнического прогресса.

Музыка, изобразительное искусство, литература, балет, театр и все, что относится к выражению творческого потенциала чело века, всегда стояли несколько особняком от научно техническо го прогресса. С одной стороны, это говорит о том, что стремле ние человека к прекрасному, возвышенному извечно и что ни какие достижения научно технического прогресса не в силах уменьшить в глазах человека той ценности и притягательности, которой обладают такие нравственные категории, как доброта, красота, истина, благородство, честность, творчество, любовь.

С другой стороны, во все времена искусство пыталось отра зить современное состояние общества, не отставая от научно технического прогресса в своём индивидуальном поиске новых средств и форм выражения. Так, в Средние века отражение те ологической морали, господствовавшей во всех сферах общест венной жизни, можно увидеть во всех образцах культуры того времени, будь то живопись, музыка или литература.

Эпоха Возрождения, провозгласившая человека венцом творения и воспевающая его божественное происхождение в проявлении чисто “человеческих” качеств, также оставила не мало свидетельств такого мировоззрения в произведениях ис кусства того времени.

Кинематограф, литература и поэзия Советского периода нашей с вами истории также проникнуты идеями и лозунгами социализма и коммунизма.

Опять же, современное искусство позиционирует себя как “искусство новых технологий” и использует все последние дос

www.nanonewsnet.ru

63

Рис 25. Микроскульптура

НАНОТЕХНОЛОГИИ ДЛЯ ВСЕХ

тижения компьютерной техники. Медиа арт, веб арт, компью терная графика, голография – наиболее актуальные на сегод няшний день направления. Иными словами, искусство шеству ет вслед за прогрессом, не желая оставаться “за бортом” и стре мясь всегда адекватно отражать окружающую нас действитель ность. Таким образом, перспективы развития науки и техники также определяют пути искусства.

Кстати, в 2001 году японские учёные, используя передовые ла зерные технологии, создали самую маленькую в мире скульптуру. Она изображает разъярённого быка, разворачивающегося для атаки. Размеры “микробыка” впечатляют: 10 мкм в длину и 7 мкм в высоту

– не больше, чем у красных кровяных телец че ловеческой крови. Увидеть его можно только в сверхмощный микроскоп. При “высечении” скульптуры использовались два лазера, кото рые работали в инфракрасном диапазоне и по специальной программе обрабатывали заго

товку из полимера, затвердевавшего только под воздействием лазерного луча. Почему бы этому бычку не положить начало новому направлению в области наноскульптуры?

И кто знает, может быть не за горами тот день, когда “Битлз” нового поколения поразят весь мир новым музыкаль ным “нано” течением…

Наноиндустрия в России и за рубежом

Считается, что с 2000 года началась эра гибридной наноэле ктроники. В настоящее время ежегодно проводятся сотни конфе ренций, посвящённых различным аспектам нанотехнологии. Опубликованы сотни тысяч статей и монографий, созданы спе циальные сайты в Интернете, происходит интенсивная подготов ка к созданию наноэлектронных элементов и различных функци ональных устройств: от простейших до нанокомпьютеров.

Кроме наноэлектроники, на основе нанотехнологии наи более активно развиваются: микро и наноробототехника, поз воляющая создать миниатюрные исполнительные механизмы с быстродействием в миллионы раз выше существующих и более сложные робототехнические системы с распределёнными ме ханическими устройствами: интегральная нанооптоэлектрони ка, позволяющая создать солнечные элементы с КПД в 4 раза

64

ГЛАВА 1. Введение в нанотехнологии

больше существующих, светодиоды и лазеры с перестраивае мым от инфракрасного до ультрафиолетового спектром излуче ния, высокоэффективные транспаранты и функциональные оптические приборы.

Осознание стратегической важности нанотехнологий при вело к тому, что в разных странах на уровне правительств и крупнейших фирм созданы и успешно выполняются програм мы работ по нанотехнологиям.

ВЯпонии программа работ по нанотехнологии получила высший государственный приоритет “Огато”. Данный проект спонсирует не только государство, но и дополнительно около 60 частных фирм. Кроме данного проекта, в Японии финанси ровалось около дюжины проектов, посвящённых различным аспектам нанотехнологии квантовым волнам, флуктуациям в квантовых системах, и др. Крупнейшими проектами являлись “Atom Craft project” и “Aono project”. Внимание, уделяемое го сударством, было не случайным ещё 10 лет назад в стране при суждались золотые медали за лучшие достижения в области на нотехнологии. Основные разработки проводились в центре перспективных технологий “Цукуба”.

ВЕвропе более чем в 40 лабораториях проводятся нанотех нологические исследования и разработки, финансируемые как по государственным, так и по международным программам (программа НАТО по нанотехнологии).

Кроме того, программы работ по нанотехнологии приобре ли статус государственных программ даже в сравнительно не больших странах типа Голландии и Финляндии.

ВСША отставание от Японии в финансировании работ по нанотехнологии стало предметом государственного обсуждения,

врезультате которого объём финансирования одних только фун даментальных исследований каждый год стал удваиваться.

С целью форсирования работ именно в данном направле нии в 2000 году по решению правительства США работы по на нотехнологии получили высший приоритет. В результате была создана Национальная нанотехнологическая инициатива, а при президенте организован специальный комитет, координи рующий работы по нанотехнологии в 12 крупнейших отраслях промышленности и вооруженных силах.

www.nanonewsnet.ru

65

НАНОТЕХНОЛОГИИ ДЛЯ ВСЕХ

Одной из целей программы является создание на основе нанотехнологии вычислительных устройств с производитель ностью в миллион раз выше существующих процессоров Pentium. Кроме того, в отличие от финансирования работ в об ласти фундаментальных исследований, объём финансирования работ по нанотехнологии в фирмах многократно выше. Напри мер, только в фирме Intel в прошлом году на разработки в об ласти нанотехнологий было потрачено более 1 млрд. долл.

В2005 году мы насчитываем уже более 50 стран, ведущих исследования и разработки в нанотехнологии, включая Южно Африканскую Республику.

ВРоссии фундаментальные исследования по нанотехноло гии проводятся по нескольким программам. Наиболее крупные из них: программа “Физика наноструктур”, руководимая ака демиком Ж.И. Алферовым, и “Перспективные технологии и устройства в микро и наноэлектронике”, руководимая акаде миком К.А. Валиевым.

По последним данным, о состоянии российской наноинду стрии можно сказать следующее:

Достигнуты высокие результаты в области создания нано технологических приборов и установок. Были развиты основы микромеханики и разработаны сканирующие зондовые, тун нельные и атомно силовые микроскопы (концерн “Наноинду стрия”, фирма НТ МДТ, HTE, НИИФП им. Ф.В.Лукина и др.).

Отечественные ученые создали собственные теоретические

иэкспериментальные заделы в области твердотельных элемен тов квантовых компьютеров, квантовой связи, квантовой крип тографии. Технологии атомного масштаба (0,5 0,1 нм) откры вают абсолютно новые перспективы в этой сфере.

Разрабатываются новые методы получения наноматериа лов: синтез и компактирование ультрадисперсных порошков, получение наноматериалов методами интенсивной пластичес кой деформации, кристаллизация из аморфного состояния, пленочная нанотехнология.

Проводятся материаловедческие работы в области “интел лектуальных материалов”, ультрадисперсного состояния и суп рамолекулярной химии, коллоидных систем, а также разраба тываются теоретические принципы строения частиц с нанораз мерами, учитывающие размер как физико химический фактор.

66

ГЛАВА 1. Введение в нанотехнологии

В области медицины, генетики и экологии также ведутся исследования и разработки наносистем. Созданы образцы так называемых “биочипов”, разработаны технологии выделения мономолекулярных кристаллических упорядоченных белковых структур бактериального происхождения и их использования в области микроэлектроники, микро и наномеханических уст ройств, биосенсоров, биотехнологии.

Результаты анализа свидетельствуют, что отечественные разработки находятся на уровне мировых достижений, но при очевидных успехах российской науки в области нанотехнологи ческих исследований наша страна пока не может вплотную за няться их массовым промышленным внедрением. Главная проблема – традиционный недостаток финансирования: в нас тоящее время в России не существует целевой государственной программы финансирования работ в области нанотехнологий.

Однако все же выдаются гранты на прикладные исследования в нанотехнологии по отдельным международным программам, а так же выделяются средства отдельными передовыми предприятиями.

Положительным фактором в этом вопросе является высо кий кадровый и научно технологический потенциал России, базирующийся на её известных интеллектуальных преимущест вах. Российское образование высоко оценивается зарубежны ми предприятиями, и много русских специалистов работает в нанотехнических лабораториях по всему миру.

Итак, повторим еще раз!

Согласно закону Мура, быстродействие компьютеров удваивается каждые 18 месяцев. Чтобы эта тенденция могла сохраняться в дальнейшем, необходимо, чтобы размеры тран зисторов преодолели нанометровый рубеж.

Нанотехнологии это технологии манипулирования ве ществом на уровне атомов и молекул с целью получения про дуктов с наперед заданной структурой.

Толчком к развитию нанотехнологий послужила лекция Ричарда Фейнмана “Там внизу много места”, в которой он на учно доказывает, что с точки зрения физики нет никаких пре пятствий к тому, чтобы создавать вещи прямо из атомов.

Для эффективного манипулирования атомами Эрик Дрекслер ввел понятие ассемблера молекулярной наномаши ны, способной к саморепликации, которая может построить любую молекулярную структуру. Ассемблеры будут представ лять собой синтез живых и технических систем.

www.nanonewsnet.ru

67

НАНОТЕХНОЛОГИИ ДЛЯ ВСЕХ

Пример эффективного природного ассемблера меха низм синтеза белка рибосомой.

В настоящий момент главным оборудованием нанотехно логий являются сканирующие зондовые микроскопы, наиболее по пулярны среди которых туннельный и атомно*силовой микроскопы.

Основным элементом зондовых микроскопов является зонд (кантилевер) сверхтонкая игла, позволяющая сканиро вать поверхность с атомарным разрешением.

Работа СТМ основана на измерении колебаний тун нельного тока, возникающего между зондом и поверхностью образца на расстоянии менее 0,5 нм. При изменении расстоя ния всего на 0,1 нм туннельный ток изменяется в 10 раз. Такие перепады позволяют с высокой точностью судить о рельефе поверхности на уровне атомов.

СТМ может работать в двух основных режимах:

а) постоянной высоты (острие иглы перемещается над

образцом, а ток меняется)

б) постоянного тока (ток поддерживается постоянным за счет перемещения иглы).

В отличие от туннельного, атомно силовой микроскоп позволяет исследовать не только проводящие, но и диэлектри ческие вещества (в том числе и биообъекты). Работа АСМ ос нована на измерении сил межмолекулярного взаимодействия, возникающих между зондом и поверхностью на малых рассто яниях (порядка ангстрема).

В 1985 году Р. Керл, Г.Крото и Р. Смолли открыли третье ал лотропное состояние углерода фуллерен, обладающее удивитель ными свойствами, за что были удостоены Нобелевской премии. Молекула фуллерена имеет форму футбольного мяча, и состоит из правильных пяти и шестиугольников. Свое название фуллерен получил в честь архитектора Бакминстера Фуллера, впервые при думавшего использовать подобные структуры в строительстве.

В 1991 году Сумио Иидзима открыл нанотрубки цили ндрические углеродные образования, поразившие ученых фи зико химическими свойствами. Нанотрубки бывают однос лойные и многослойные, они гораздо легче дерева и в десятки раз прочнее стали, могут быть как проводниками тока, так и диэлектриками, обладают каппилярным эффектом и могут ис пользоваться во многих областях науки и техники.

Чем выше дисперсность частицы, тем больше площадь

ееконтакта с окружающей средой, что значительно влияет на химические и физические свойства данного вещества.

68

ГЛАВА 2. Законы квантового мира

Глава 2. Законы квантового мира

“Раз поведение атомов так не похоже на наш обыденный опыт, то к нему очень трудно при выкнуть. И новичку в науке, и опытному физи ку всем оно кажется своеобразным и туман ным. Даже большие ученые не понимают его настолько, как им хотелось бы ...”

Ричард Фейнман

Как возникла квантовая физика

Квантовая физика (механика) как научная теория оформи лась в начале XX века. Она ставит перед собой практически те же задачи, что и классическая механика Ньютона, то есть уста навливает способы описания и законы движения физических тел в пространстве и времени. Различие заключается в том, что в качестве объектов изучения выступают не макроскопические тела, как в классической физике, а субмикронные (элементар ные) частицы из мира атомов и молекул.

Говоря об элементарных частицах, нельзя не упомянуть древ негреческого философа Демокрита, который полагал, что атомы

– это неделимые частицы материи, различающиеся только фор мой, величиной и положением. Он считал, что существует всего четыре вида таких атомов: атомы земли, воды, воздуха и огня.

Химия XIX века доказала существование гораздо большего разнообразия атомов, а открытие электрона в 1897 году поло жило конец мифу об их неделимости. Позднее кроме электрона были открыты и другие субатомные частицы – протон, нейт рон, мезон, пион и т.д. Но при этом оказалось, что взаимодей ствие между элементарными частицами происходит под действием каких то доселе неизвестных сил, многократно пре вышающих все изученные к тому времени.

Таким образом, в начале ХХ столетия выяснилось, что классическая механика не способна адекватно описывать зако ны взаимодействия микрочастиц, движущихся в чрезвычайно малом объеме (внутри атома), а необходимость установления этих законов и привело к рождению “новой” физики, получив шей название квантовой.

Но ведь физика – это наука о природе, ведь это видно даже из ее названия (“physis” – в переводе с греческого значит “при рода”). И как едина природа, так должна быть единой и физи

www.nanonewsnet.ru

69

НАНОТЕХНОЛОГИИ ДЛЯ ВСЕХ

ка, изучающая закономерности ее проявлений. Поэтому исто рически возникшее разделение дисциплины на “классичес кую” и “квантовую” представляется нам не совсем правиль ным. Тем не менее, иногда это оправдано – ведь способы реше ния конкретной физической задачи определяются видом тех законов и формул, которыми мы пользуемся, а они существен но различаются в классической и квантовой физике.

“Квант” в переводе с латинского означает “наименьшее количество”, на которое может измениться дискретная (прерывистая) физическая величина. Квантом также называют частицу носитель каких либо свойств (например, фотон – это квант электромагнитного поля).

Переход от классических представлений к квантовым тре бует от человека определенной психологической перестройки, ибо многие понятия, прочно устоявшиеся в нашем классичес ком мире, оказываются “вне игры” в мире квантовом.

Например, мы привыкли, что в классической физике поло жение тела вполне конкретно задается в трехмерном простран стве, а для описания его движения (т.е. изменения положения со временем) используется понятие траектории. При этом, ка ким бы сложным ни было движение тела в классической меха нике: равномерным, вращательным, колебательным и т.д., – мы, зная уравнение его траектории, всегда можем предсказать положение тела в последующий момент времени. Причем, го воря о том, что тело движется по некоторой траектории, мы предполагаем, что оно не может в один и тот же момент пере мещаться в пространстве еще каким нибудь образом (согласи тесь, сложно представить автомобиль или самолет, движущий ся одновременно в двух направлениях).

А вот в квантовой механике мы уже не можем оперировать понятием единственно возможной траектории частицы вооб ще, поскольку современный уровень развития знаний о зако нах квантового мира пока не позволяет нам однозначно и точ но описывать движение элементарных частиц.

Да что там траектория! Вот если в классике все очевидно – бросили вы деревяшку (частицу) в пруд, а по поверхности пру да побежали волны, – то в микромире сам квантовый объект умудряется обладать одновременно как волновыми свойства ми, так и свойствами частицы. Вспомните хотя бы эффект тун

70

ГЛАВА 2. Законы квантового мира

нелирования электронов сквозь потенциальный барьер, с кото рым мы познакомились в первой главе при изучении СТМ. Ес ли представить себе электрон в виде микроскопического мячи ка, движущегося в сторону высокого потенциального “забора”, то нельзя со стопроцентной уверенностью утверждать, что если его собственная энергия меньше потенциальной энергии барь ера, то он обязательно отскочит от него (как это сделал бы обычный мячик в нашем представлении). Факт остается фак том: некоторые электроны все же “проскакивают” сквозь барь ер, словно в “заборе” для них имеется специальный “туннель”, проявляя таким образом свои волновые качества.

В квантовой физике такие “чудеса в решете” строго доказыва ются и точно описываются, хотя с классической точки зрения выг лядят абсурдом. Тем не менее, эти “абсурдные” квантовые эффекты уже десятки лет исправно работают в различных приборах, а тун нельные микроскопы с 1985 года весьма продуктивно служат науке.

Сразу обращаем ваше внимание на то, что представлять элект рон в виде круглого мячика не совсем правильно, поскольку на са мом деле определить его истинную форму физика – пока – неспо собна. Поэтому следует понимать, что аналогия “электрон мячик”

– это лишь удобная мысленная модель, наглядное допущение, оп равданное в некоторых случаях. Подробнее о проблеме определе ния природы элементарных частиц мы поговорим чуть позже.

И все таки, в каком мире мы живем – квантовом или класси ческом? Повторимся: наш мир един, как его ни назови. А вот каки ми законами пользоваться – квантовыми или классическими – за висит от конкретной задачи и необходимой точности ее решения.

Когда же, а точнее – с чего началось разделение физической науки на классическую и квантовую? Можно сказать, что первоп ричиной этому было расхождение в понимании природы света.

Первые научные воззрения на природу света принадлежат великим ученым XVII века – Ньютону и Гюйгенсу. Они придер живались противоположных взглядов: Ньютон считал, что свет представляет собой поток частиц (корпускул). Гюйгенс полагал, что свет – это волновой процесс. По Ньютону получалось, что чем больше оптическая плотность среды, тем больше в ней ско рость распространения света, по Гюйгенсу – наоборот. Великих ученых мог рассудить только опыт, однако в XVII веке необхо димая для его проведения техника была недоступна. Поэтому вплоть до XIX века (когда ученым удалось измерить скорость света

www.nanonewsnet.ru

71

НАНОТЕХНОЛОГИИ ДЛЯ ВСЕХ

в различных оптических средах) свет считали потоком особых све товых частиц. Таким образом, сначала “победила” теория Ньютона, чей непререкаемый авторитет попросту “задавил” идеи Гюйгенса.

Но в начале XIX века Академия наук Франции объявила кон курс на лучшую работу по теории света, на котором Огюст Фре нель представил свою работу по интерференции и дифракции све та, согласно которой свет представляет собой волновой процесс.

Когда распространяющийся плоский фронт волн на пове рхности воды достигает перегородки, в которой есть узкая щель, волны выходят из нее кругами. Это явление называется дифракцией. Дифракция присуща не только обычным волнам, но и всем видам излучения, включая радиоволны, световые волны и рентгеновские лучи. При наличии в перегородке нес кольких щелей каждая из них оказывается источником круго вых или сферических волн. Эти волны интерферируют (взаи модействуют) друг с другом, взаимно уничтожаясь в одних мес тах и усиливаясь в других.

Рис 26. Явления дифракции и интерференции

Надеемся, что из курса школьной физики читатель хорошо помнит те характерные дифракционные и интерференционные картины, которые свидетельствуют о способности волн огибать препятствия, соразмерные длине волны. Поэтому мы не будем под робно останавливаться на опытах Френеля и продолжим рассказ.

В ходе дальнейшего обсуждения президент Академии Пуас сон заметил Френелю, что из его теории следуют “нелепые вы воды”. Например, если осветить тонкую иголку пучком парал лельных лучей, то в том месте, где должна быть геометрическая тень от иголки, по теории Френеля должна быть светлая поло са. Присутствующий на заседании ученый секретарь Академии Араго тут же организовал проведение этого нехитрого экспери

72

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]