Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

obshaja_cytologija

.pdf
Скачиваний:
16
Добавлен:
18.03.2015
Размер:
1.79 Mб
Скачать

молекул. Срединные участки молекул гистонов образуют несколько (3-4) α- спиральных участка, которые компактизуются в глобулярную структуру в изотонических условиях (рис. 56). По-видимому, богатые положительными зарядами неспирализованные концы белковых молекул гистонов и осуществляют их связь друг с другом и с ДНК.

У гистона H1 наиболее вариабельным является N-конец, осуществляющий связь с другими гистонами, а C-конец, богатый лизином, взаимодействует с ДНК.

В процессе жизнедеятельности клеток могут происходить посттрансляционные изменения (модификации) гистонов: ацетилирование и метилирование некоторых остатков лизина, что приводит к потере числа положительных зарядов, и фосфорилирование сериновых остатков, приводящее к появлению отрицательного заряда. Ацетилирование и фосфорилирование гистонов может быть обратимым. Эти модификации значительно меняют свойства гистонов, их способность связываться с ДНК. Так повышенное ацетилирование гистонов предшествует активации генов, а фосфорилирование и дефосфорилирование связаны соответственно с конденсацией и деконденсацией хроматина.

Гистоны синтезируются в цитоплазме, транспортируются в ядро и связываются с ДНК во время ее репликации в S-периоде, т.е. синтез гистонов и ДНК синхронизированы. При прекращении клеткой синтеза ДНК гистоновые информационные РНК за несколько минут распадаются и синтез гисонов останавливается. Включившиеся в хроматин гистоны очень стабильны, имеют низкую скорость замены.

Подразделение гистоноы на пять групп и достаточное сходство их внутри каждой группы в целом характерно для эукариот. Однако целый ряд отличий в составе гистонов наблюдается как у высших, так и у низших эукариотических организмов. Так у низших позвоночных вместо H1, характерного для всех тканей этих организмов, в эритроцитах находят гистон H5, который содержит

121

больше аргинина и серина. С другой стороны, наблюдается отсутствие некоторых групп гистонов у ряда эукариот, и в целом ряде случаев полная замена этих белков на другие.

Гистоноподобные белки были обнаружены в составе вирусов, бактерий, митохондрий. Так, например, у E. coli в клетке в большом количестве обнаруживаются белки (HU и H-NS), по аминокислотному составу напоминающие гистоны.

Функциональные свойства гистонов

Широкое распространение гистонов, их сходство даже у очень отдаленных видов, обязательность вхождения их в состав хромосом, все это говорит об их чрезвычайно важной роли в процессе жизнедеятельности клеток. Еще до открытия нуклеосом существовало две взаимодополняющие друг друга группы гипотез о функциональной роли гистонов, о регуляторной и структурной их роли.

Было обнаружено, что выделенный хроматин при добавлении к нему РНКполимеразы может быть матрицей для транскрипции, однако активность его составляет всего лишь около 10% от активности, соответствующей активности выделенной чистой ДНК. Эта активность прогрессивно возрастает по мере удаления групп гистонов и может достичь 100% при полном удалении гистонов. Отсюда можно было сделать вывод, что общее содержание гистонов может регулировать уровень транскрипции. Это наблюдение совпадает с тем, что по мере удаления гистонов, особенно H1, происходит прогрессивная деконденсация, разворачивание фибрилл ДНП, что возможно облегчает взаимодействие РНК-полимеразы с матричной ДНК. Так же было обнаружено, что модификация гистонов приводит к усилению транскрипции и одновременной декомпактизации хроматина. Следовательно, напрашивается вывод о том, что количественное и качественное состояние гистонов влияет на степень компактности и активности хроматина. Однако оставался открытым вопрос о специфичности регуляторных свойств гистонов: какова роль гистонов

122

при синтезе специфических иРНК в различно дифференцированных клетках. Этот вопрос до сих пор еще не решен, хотя можно сделать некоторые обобщения: на эту роль могут претендовать те группы гистонов, которые наименее консервативны, такие как H1 или как H2A и H2B, которые могут в значительной мере модифицироваться и тем самым изменять свои свойства в определенных участках генома.

Была очевидна и структурная, компактизирующая, роль гистонов в организации хроматина. Так постепенное добавление фракции гистонов к растворам чистой ДНК приводит к выпадению в осадок комплекса ДНП, и наоборот, частичное удаление гистонов из препаратов хроматина, ведет к его переходу в растворимое состояние. С другой стороны, в цитоплазматических экстрактах ооцитов земноводных или яиц морских ежей, содержащих свободные гистоны, добавление любой ДНК (включая фаговую) привводит к образованию хроматиновых фибрилл (ДНП), длина которых в несколько раз короче исходных ДНК. Эти данные говорят о структурной, компактизирующей роли гистонов. Для того, чтобы огромные сантиметровые молекулы ДНК уложить по длине хромосомы, имеющей размер всего несколько микрометров, молекула ДНК должна быть как-то скручена, компактизована с плотностью упаковки равной 1 : 10000. Оказалось, что в процессе компактизации ДНК существуют несколько уровней упаковки, первые из которых прямо определяются взаимодействием гистонов с ДНК.

Первый уровень компактизации ДНК: структурная роль нуклеосом

В ранних биохимических и электронномикроскопических работах было показано, что препараты ДНП содержат нитчатые структуры с диаметром от 5 до 50 нм. Постепенно стало ясно, что диаметр фибрилл хроматина зависит от способа выделения препарата.

На ультратонких срезах интерфазных ядер и митотических хромосом после фиксации глутаровым альдегидом обнаруживались хроматированные фибриллы толщиной 30 нм. Такие же размеры имели фибриллы хроматина при физической

123

фиксации ядер - при быстром замораживании ядер, скалывании объекта и получении реплик с таких препаратов. В последнем случае исключалось воздействие на хроматин переменных химических условий. Но все эти методы и приемы не давали никакой информации о характере локализации ДНК и гистонов в хроматиновых фибриллах.

Крупным событием в изучении хроматина было открытие двумя разными способами нуклеосом - дискретных частиц хроматина. Так при осаждении на подложку для электронной микроскопии препаратов хроматина в щелочных условиях при низкой ионной силе, можно было видеть, что нити хроматина представляли собой что-то, напоминающее “бусы на нитке”: небольшие, около 10 нм, глобулы, связанные друг с другом отрезками ДНК длиной около 20 нм (рис. 57, 58). Эти наблюдения совпадали с результатами фракционирования хроматина после частичного нуклеазного переваривания.

Было найдено, что если подвергнуть действию нуклеазы микрококков выделенный хроматин, то он подвергается распаду на регулярно повторяющиеся структуры. Так ДНК, полученная из хроматина, обработанного нуклеазой, состояла из серии отрезков, кратных 200 парам оснований; встречались отрезки в 200, 400, 600, 800 и больше пар нуклеотидов (п.н.). Это говорит о том, что нуклеазной атаке в составе хроматина подвергаются участки ДНК, расположенные примерно через каждые 200 п.н. При этом в кислоторастворимую фракцию (низкополимерная) ДНК уходит всего 2% ядерной ДНК. Кроме того после такой нуклеазной обработки из хроматина путем центрифугирования удается выделить фракцию частиц со скоростью седиментации 11S (S - единица Сведберга, определяющая скорость седиментации частиц, равна 1 х 10-13 с), а также частицы кратного этой величине размера: димеры, тримеры, тетрамеры и т.д. Оказалось, что частицы 11S содержат ДНК около 200 п.н. и восемь гистонов (октамер) по две копии гистонов H2A, H2B, H3 и H4 и одну копию гистона H1. Такая сложная нуклеопротеидная частица получила название нуклеосомы. Более подробный

124

анализ этой фракции показал, что нуклеосома устроена следующим образом: октамер гистонов образует белковую основу-сердцевину (от англ. core, часто в нашей литературе этот термин используется без перевода: кор, коровая частица), по поверхности которой располагается ДНК величиной в 146 п.н., образующая 1,75 оборота; остальные 54 п.н. ДНК образуют участок, несвязанный с белками сердцевины - линкер, который, соединяя две соседние нуклеосомы, переходит в ДНК следующей нуклеосомы. Гистон H1 связывается частично с основной, сердцевиной и с участком линкера (около 30 п.н.). Следовательно, полная нуклеосома содержит около 200 п.н. ДНК (146 п.н.- сердцевина, 30 п.н. - участок линкера в комплексе с гистоном H1, 30 п.н. - свободная ДНК), октамер сердцевинных (коровых) гистонов и одну молекулу гистона H1 (рис. 59). Молекулярная масса полной нуклеосомы - 262000 Да. Рассчитано, что на весь гаплоидный геном человека (3 х 109 пар оснований) приходится 1,5 х 107 нуклеосом.

Сердцевина или коровая частица (или минимальная нуклеосома) очень консервативны по своей структуре: они всегда содержат 146 п.н. ДНК и октамер гистонов. Линкерный участок может значительно варьировать (от 8 до 114 п.н. на нуклеосому).

Используя метод рассеяния нейтронов удалось установить форму и точные размеры нуклеосом. При грубом приближении – это плоский цилиндр или шайба диаметром 11 нм и высотой 6 нм. Располагаясь на подложке для электронного микроскопирования они образуют «бусины», глобулярные образования около 10 нм, гуськом, тандемно сидящие на вытянутых молекулах ДНК. На самом же деле вытянутыми являются только линкерные участки, остальные три четверти длины ДНК спирально уложены по периферии гистонового октамера. Сам гистоновый октамер, как считают, имеет форму, напоминающую мяч для игры в рэгби, в состав которого входит тетрамер (H3 ∙ H4)2 и два независимых димера H2A ∙ H2B. На рис. 60 представлена схема расположения гистонов в сердцевинной части нуклеосомы.

125

В фибриллах хроматина линкерный участок не линеен, а продолжая спираль ДНК на поверхности нуклеосомной частицы,связывает соседние нуклеосомы так, что образуется как бы сплошная нить, толщиной около 10 нм, состоящая из тесно расположенных нуклеосом (рис. 61). При этом за счет дополнительной спирализации ДНК (1 отрицательный супервиток ДНК на 1 нуклеосому) происходит первичная компактизация ДНК, с плотностью упаковки равной 6-7 (200 п.н. длиной 68 нм, уложены в глобулу диаметром 10 нм). Укладка почти двух витков ДНК по периферии сердцевин нуклеосомы происходит, как считается, за счет взаимодействия положительно заряженных аминокислотных остатков на поверхности октамера гистонов с фосфатами ДНК. N- и C-концевые участки сердцевинных гистонов, обогащенные положительными зарядами, вероятно, служат для дополнительной стабилизации структуры нуклеосомы.

Ведущая роль сердцевинных (коровых) белков в компактизации ДНК показана при самосборке нуклеосом. Регулируя последовательность добавления гистонов и ДНК, удалось получить полную реконструкцию нуклеосом. В этом процессе не играет никакой роли источник, откуда была взята ДНК: это может быть ДНК бактерии и даже циклическая ДНК вирусов. Оказалось, что для образования нуклеосом гистон H1 не требуется, он участвует в связывании уже готовых нуклеосом друг с другом и в образовании более высоких уровней компактизации ДНК. Ключевыми в построении нуклеосом оказались гистоны H3 и H4. При этом вначале ДНК связывается с тетрамером (H3 ∙ H4)2 к которому позжеприсоединяются два димера H2A ∙ H2B. Вероятно, высокая консервативность в строении гистонов H3 и H4 отражает их ведущую структурную роль на первых этапах компактизации ДНК при образовании нуклеосом.

Нуклеосомы при репликации и транскрипции

Как же происходит образование нуклеосом при репликации ДНК, какова судьба нуклеосом в вилке репликации, как распределяются новые и старые нуклеосомы или их белки – все эти вопросы еще до конца не разрешены.

126

При электронномикроскопическом исследовании реплицирующегося хроматина было обнаружено, что обе новообразованные фибриллы содержат нуклеосомы.

Если учесть скорость синтеза ДНК эукариот (20 нм в секунду),то новые нуклеосомы при удвоении хромосомных фибрилл должны возникать со скоростью 3-4 сек. Такая высокая скорость образования нуклеосом связана с тем, что в момент синтеза ДНК существует уже пул синтезированных гистонов всех классов, готовых войти в состав нуклеосом. Гистоновые гены, относящиеся к фракции умеренно повторяющихся последовательностей ДНК, представлены в виде множественных копий для каждого гистона. Они активируются вместе с началом синтеза ДНК, поэтому по мере продвижения репликационной вилки, новые участки ДНК могут сразу взаимодействовать с новосинтезированными гистонами. Новосинтезированные гистоны и старые гистоны в составе предшествующих нуклеосом не смешиваются при образовании нуклеосом во время репликации ДНК. Вместо этого октамеры гистонов, присутствующие до репликации остаются интактными и переходят на дочерний дуплекс ДНК, в то время как новые гистоны собираются в совершенно новые кор-частицы на свободных от нуклеосом участках ДНК. Старые и новые октамеры гистонов распределяются между дочерними дуплексами ДНК случайным образом.

Что происходит со старыми нуклеосомами в вилке репликациии ДНК до конца не ясно. Согласно одной из гипотез, каждая из нуклеосом при подходе к ней репликативной вилки как бы расщепляется на две «полунуклеосомы», а нуклеосомная ДНК разворачивается, чтобы дать пройти этот участок ДНКполимеразе. После этого новосинтезированная цепь ДНК связывается со свободными гистонами, которые есть в избытке в ядре, и образуются новые нуклеосомы на второй цепи ДНК.

Как уже упоминалось, для активно функционирующих зон хроматина характерно деконденсированное, диффузное,состояние. На этом свойстве хроматина основан один из методов получения фракций активного хроматина,

127

когда с помощью центрифугирования удается осадить конденсированный хроматин из гомогенатов ядер, отделив его тем самым от диффузного хроматина, обладающего высокой транскрипционной активностью. Фракции активного хроматина обладают рядом характерных свойств: повышенной чувствительностью к нуклеазам, повышенным уровнем модификации гистонов (особенно ацетилированием гистона H1), повышенным содержанием некоторых негистоновых белков.

Биохимические данные показывают, что во время транскрипции часть нуклеосомнвх белков остается связанной с ДНК. Нуклеосомы как частицы видны на хроматиновых фибриллах как до места отхождения транскрипта, так и после него при редкой посадке РНК-полимеразы, фермента вдвое большего, чем нуклеосома. При частой посадке этого фермента (например при транскрипции рибосомных генов, или генов в других активных локусах), частицы РНКполимеразы располагаются тесно друг к другу и между ними нуклеосомы не видны (рис. 101). Вероятнее всего нуклеосомные белки при прохождении РНКполимеразы не теряют связи с ДНК, а сама ДНК в составе нуклеосомы разворачивается. Предлагаются два варианта изменения структуры нуклеосом при синтезе РНК. При одном их них нуклеосома «расщепляется» на две полунуклеосомы, а ДНК разворачивается; при другом – нуклеосома частично декомпактизируясь, сохраняет тетрамер H3-H4, а два димера H2A-H2B временно отходят, а затем, после прохождения РНК-полимеразы, возвращаются, при этом восстанавливается исходная нуклеосома.

Второй уровень компактизациии – 30 нм фибрилла

Таким образом первый, нуклеосомный, уровень компактизации хроматина играет как регуляторную, так и структурную роль, обеспечивая плотность упаковки ДНК приблизительно в 6-7 раз.

Однако во многих электронномикроскопических исследованиях было показано, что как в митотических хромосомах, так и в интерфазных ядрах выявляются фибриллы хроматина с диаметром 30 нм (рис. 57в, 62).

128

Хроматиновые фибриллы такого диаметра были видны как на ультратонких срезах после фиксации глутаровым альдегидом, так и на препаратах выделенного хроматина и выделенных хромосом в растворах, содержащих хотя бы низкие концентрации двухвалентных катионов. Было показано, что 30 нм фибрилла хроматина может обратно менять свой диаметр, становится фибриллой с толщиной 10 нм, если препараты хроматина переводить в деионизованную воду или в растворы, содержащие хелатон ЭДТА. С другой стороны, даже частичная экстракция гистона H1 переводит исходные 30 нм фибриллы хроматина в 10 нм нити, имеющие типичный нуклеосомный уровень организации. При добавлении к ним гистона H1восстанавливается первоначальный диаметр фибрилл.

Все это говорило о том, что нуклеосомные цепочки хроматина каким-то специфическим образом уложены так, что возникает не хаотическая агрегация нуклеосом, а правильная нитчатая структура с диаметром 30 нм.

Относительно характера упаковки нуклеосом в составе 30 нм фибриллы хроматина существует, по крайней мере, две точки зрения.

Одна из них защищает, т.н. соленоидный тип укладки нуклеосом. Согласно этой модели, нить плотно упакованных нуклеосом диаметром 10 нм образует в свою очередь спиральные витки с шагом спирали около 10 нм. На один виток такой суперспирали приходится 6 нуклеосом (рис. 62). В результате такой упаковки возникает фибрилла спирального типа с центральной полостью, которая иногда на негативно окрашенных препаратах бывает видна как узкий «канал» в центре фибриллы. При частичном разворачивании, декомпактизации такой фибриллы и нанесении ее на подложку хорошо видно «зигзагообразное» расположение нуклеосом вдоль фибриллы. Считается, что гистон H1 обеспечивает взаимодействие между соседними нуклеосомами, не только сближая и связывая их друг с другом, но и обеспечивая кооперативную связь нуклеосом так, что образуется довольно плотная спираль из 10 нм фибриллы. Удаление, даже частичное, гистона H1 вызывает переход 30 нм фибриллы в 10

129

нм фибриллу, а полное удаление его вызывает разворачивание последней в структуру типа «бусин-на-нити». Такой соленоидный тип упаковки ДНК приводит к плотности упаковки равной приблизительно 40 (т.е. на каждый мкм нити приходится 40 мкм ДНК). Эти представления получили подтверждение при анализе структуры хроматина с помощью дифракции рентгеновских лучей и нейтронов. Здесь необходимо отметить, что представление о соленоидном типе укладки получены из анализа вторично конденсированного хроматина. Вначале были получены препараты хроматина в присутствии ЭДТА или выделялись в растворах низкой ионной силы в присутствии ионов магния. Во всех этих случаях первоначально хроматин деконденсировался до уровня «бусин на нити», где отсутствует или дестабилизируется контакт между нуклеосомами.

Если же исследовать хроматин в составе ядер или в виде выделенных препаратов, но при поддержании определенной концентрации двухвалентных катионов (не ниже 1мМ), то можно видеть дискретность в составе 30 нм фибрилл хроматина: она состоит как бы из сближенных глобул того же размера, из нуклеомеров. В зарубежной литературе такие 30 нм глобулы или нуклеомеры получили название сверхбусин («супербиды») (рис. 57в, 62). Было обнаружено, что если в условиях, когда нуклеомерная структура фибрилл хроматина сохраняется, препараты хроматина подвергнуть нуклеазной обработке, то часть хроматина растворяется. При этом в раствор выходят частицы, имеющие размер около 30 нм с коэффициентом седиментации равным 45S в растворах, содержащих 1 мМ магния. Если такие выделенные нуклеомеры обработать ЭДТА, удалить ионы магния, то они разворачиваются в нуклеосомные цепочки, содержащие 6-8 нуклеосом. Таким образом, в состав одного нуклеомера входит отрезок ДНК, соответствующий 1600 парам оснований или 8 нуклеосомам.

Компактность нуклеомера зависит от концентрации ионов магния и наличия гистона H1. Негистоновые белки в конформационных превращениях нуклеомеров не участвуют.

130

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]