Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
/ Документ Microsoft Office Word (2).docx
Скачиваний:
7
Добавлен:
17.03.2015
Размер:
65.75 Кб
Скачать

СОДЕРЖАНИЕ

ВВЕДЕНИЕ 3

1. Коллекторские свойства продуктивных пластов 4

2. Физические свойства горных пород – коллекторов нефти и газа 12

2.1 Виды пород-коллекторов 12

2.2 Гранулометрический состав горных пород 16

3. Условия залегания нефти, газа и воды в продуктивных пластах 21

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 25

ВВЕДЕНИЕ

В последние десятилетия ни одно месторождение не начинают разрабатывать без детального изучения физических свойств пород пласта, пластовых жидкостей и газов — без этого нельзя осуществить научно обоснованную разработку месторождений нефти и газа.

Эксплуатация нефтяных, газовых и газоконденсатных залежей связана с фильтрацией огромных масс жидкостей и газов в пористой среде к забоям скважин. От свойств пористых сред, пластовых жидкостей и газов зависят закономерности фильтрации нефти, газа и воды, дебиты скважин, продуктивность коллектора.

По мере эксплуатации залежей условия залегания нефти, воды и газа в пласте изменяются. Это сопровождается значительными изменениями свойств пород, пластовых жидкостей, газов и газоконденсатных смесей. Поэтому эти свойства рассматриваются в динамике — в зависимости от изменения пластового давления, температуры и других условий в залежах.

Важное место в курсе отводится физике и физико-химии вытеснения нефти и газа из пористых сред вытесняющими агентами. Эти материалы служат теоретической основой современных методов увеличения нефте- и газоотдачи пластов.

Современный инженер-нефтяник, занимающийся рациональной разработкой нефтяных и газовых месторождений, должен хорошо знать геологическое строение залежи, её физические характеристики (пористость, проницаемость, насыщенность и др.), физико-химические свойства нефти, газа и воды, насыщающие породы, уметь правильно обработать и оценить данные, которые получены при вскрытии пласта и при его последующей эксплуатации. Эти данные позволят определить начальные запасы углеводородов в залежи. Они необходимы для объективного представления о процессах, происходящих в пласте при его разработке и на различных стадиях эксплуатации.

1. Коллекторские свойства продуктивных пластов.

При решении конкретно-научных задач нефтегазопромысловой геологии одна из исходных задач – изучение внутреннего строения залежи нефти и газа. Суть этой задачи сводится к выделению в объеме залежи геологических тел, сложенных породами-коллекторами и породами-неколлекторами, а затем к выделению в объеме, занятом породами-коллекторами, геологических тел, различающихся значениями основных геолого-промысловых свойств – пористости, проницаемости, продуктивности и т.п. Другими словами, в статическом геологическом пространстве необходимо выделить некоторую систему на основе списка свойств, соответствующего цели исследования, и выявить структуру этой системы.

При отнесении породы к коллекторам или неколлекторам необходимо исходить из возможности движения нефти или газа в ее поровом пространстве. Коллектором называется горная порода, обладающая такими геолого-физическими свойствами, которые обеспечивают физическую подвижность нефти или газа в ее пустотном пространстве. Порода-коллектор может быть насыщена как нефтью или газом, так и водой. Выше ВНК (ГВК) коллектор нефтенасыщен (газонасыщен), ниже – водонасыщен. Порода-коллектор водонасыщена за внешним контуром нефтеносности, нефтенасыщена во внутреннем контуре нефтеносности, газонасыщена во внутреннем контуре газоносности. [1]

Как показывает практика, не все породы-коллекторы, содержащие физически подвижную нефть, отдают ее при существующих в наше время технологии и системах разработки. В связи с этим коллекторы делят на продуктивные и непродуктивные, т.е. отдающие и не отдающие нефть или газ при современных системах разработки.

Способность пород-коллекторов содержать нефть, газ и воду обусловливается наличием в породах пустот, т.е. существованием пустого пространства (или пустотности), которое может быть представлено порами, кавернами и трещинами. В соответствии со сказанным емкостные свойства коллекторов нефти или газа обусловливаются пористостью, кавернозностью и трещиноватостью.

Под пористостью горной породы понимается наличие в ней пор, не заполненных твердым веществом. Различают полную, открытую пористость и пористость скелета породы. Полная пористость включает в себя абсолютно все поры горной породы, как изолированные (замкнутые), так и открытые, сообщающиеся друг с другом и поверхностью образца, пористость которого определяется. Пористость, образуемая сообщающимися порами, называется открытой. Количественно пористость породы характеризуется коэффициентом пористости. Коэффициент пористости измеряется в долях единицы. Его можно выразить также в процентах от объема породы.

Пористость породы в большой степени зависит от размеров поровых каналов, которые в свою очередь, определяются гранулометрическим составом слагающих горную породу частиц и степенью их сцементированности. По величине поровые каналы нефтяных и газовых коллекторов условно разделяются на три группы: 1) сверхкапиллярные – диаметром 2 – 0, 5 мм; 2) капиллярные – 0, 5 – 0, 0002 мм (до 0, 2 мкм); 3) субкапиллярные – менее 0, 0002 мм (менее 0, 2 мкм).

Кавернозность горных пород обусловливается существованием в них пустот, которые по некоторым физическим особенностям относятся к типу каверн. Общепринятых представлений об отличительных особенностях пор и каверн в настоящее время еще нет. Г.Н. Теодорович считает, что к кавернам следует относить пустоты, которые в трех взаимно перпендикулярных направлениях имеют размеры больше 2 мм.

Если порода относится к чисто каверному типу, то метод исчисления коэффициента полной и открытой кавернозности аналогичен методу определения коэффициентов пористости.

Для определения пустотности кавернозно-пористой породы необходимо определить суммарную и раздельную емкость пор и каверн. Трещиноватость горных пород (трещинная емкость) обусловливается наличием в них трещин, не заполненных твердым веществом. Залежи, связанные с трещиноватыми коллекторами, приурочены большей частью к плотным карбонатным породам, а в некоторых районах и к терригенным отложениям. Такие породы очень плотные, часто не пропускают жидкости и газы, т.е. практически плохо проницаемые. Вместе с тем наличие разветвленной сети трещин, пронизывающих эти коллекторы, обеспечивает значительные притоки нефти к скважинам.

Качество трещиноватой горной породы как коллектора определяется густотой и раскрытостью трещин. Понятие раскрытости в некоторой степени условное. Существование трещин в породах на больших глубинах в условиях горного давления возможно лишь при наличии многочисленных контактов между их стенками. Площадь контактов по сравнению с площадью стенок трещин мала, и поэтому контакты существенно не влияют на емкостные и фильтрационные свойства трещин. На этом основании и введено понятие раскрытости трещин.

Емкость коллектора трещинного типа обусловливается емкостью пустот всех трех видов:

  1. емкость пор пород, коэффициент пористости которых обычно составляет 2-10% (трещиноватости, как правило, подвержены плотные и, следовательно, низкопористые породы);

  2. емкостью каверн и микрокарстовых пустот. Наибольшая емкость этих пустот характерна для отличающихся повышенной растворимостью карбонатовых пород, в которых она составляет значительную часть (13 – 15%) емкости пустотного пространства;

  3. емкостью самих трещин (трещинной емкостью). Пустоты этого вида составляют десятые доли процента от объема трещиноватой породы. Чаще всего трещины играют роль путей фильтрации жидкости или газа, связывающих воедино поровое пространство блоков и каверн.[1]

При образовании залежей нефть и газ вследствие меньшей плотности мигрировали в повышенные части пласта, вытесняя оттуда воду. Однако вода из пустотного пространства вытеснялась не полностью, вследствие чего нефтегазонасыщенные пласты наряду с УВ содержат и некоторое количество воды, называемой остаточной. Относительное содержание этой воды в пустотном пространстве тем больше, чем меньше размер пустот и проницаемость коллекторов.

Начальное распределение нефти, газа и остаточной воды в пустотном пространстве коллектора влияет на процессы движения нефти через коллектор и вытесняя ее водой. Количество, состав и состояние остаточной воды связаны со свойствами поверхности минерального вещества (твердой фазы) нефтяного коллектора. В частности, поверхность минеральных зерен (или пустот, что одно и то же) характеризуется значительной неоднородностью по смачиваемости.

Проницаемость – это фильтрационное свойство коллектора, характеризующее его способность пропускать нефть, газ и воду.

В процессе разработки нефтяных и газовых месторождений в пустотном пространстве пород происходит фильтрация жидкостей, газов или их смесей. В последнем случае проницаемость одной и той же породы для какой-либо составляющей смеси, называемой фазой (нефти, газа или воды), зависит от количества и качественного состава других фаз. Поэтому для характеристики проницаемости нефтегазосодержащих пород введены понятия абсолютной, фазовой (эффективной) и относительной проницаемостей.

Запасами нефти, газа или конденсата называется их количество содержащееся в породах-коллекторах в пределах изучаемой части геологического пространства. В соответствии с этим определением можно говорить о запасах отдельного слоя, пласта, зонального интервала, блока, а также любой части указанных геологических тел в пределах залежи, месторождения, группы месторождений, нефтеносного пласта и т.п.

Классификация запасов обеспечивает единые принципы подсчета и учета запасов нефти и газа в недрах исходя из степени изученности этих запасов и их подготовленности для промышленного освоения. Отнесение запасов к той или иной категории производится в соответствии с надежностью их определения, которая зависит от геологических условий и степени изученности подсчетного объекта.

Категории - запасов наиболее общий интегральный показатель степени изученности и подготовленности залежей или ее части к разработке. В связи с этим отнесение запасов к той или иной категории требует конкретной объективной оценки условий, в которых находится залежь, с точки зрения количества и качества полученной по ней информации.

При подсчете запасов УВ их относят к категориям А, В, С1 и С2. Условия отнесения запасов к той или иной из указанных категорий определяются «Инструкцией по применению классификации запасов месторождений, перспективных и прогнозных ресурсов нефти и горючих газов».

Результаты оценки точности подсчета запасов позволяют: 1) дать объективную оценку состояния геологической изученности залежи; 2) получить дополнительные данные для количественной характеристики запасов; 3) выявить и устранить систематические погрешности при обосновании подсчетных параметров и проведении расчетов и тем самым повысить достоверность результатов подсчета запасов; 4) обосновать бурение скважин и проведение исследований, необходимых для доразведки залежи с целью точности подсчета запасов; 5) более правильно и полно определить задачи геологических исследований, проводимых в процессе разработки.

Согласно действующей классификации, запасы месторождений нефти и газа по значению разделяют на две группы, подлежащие отдельному учету: балансовые запасы, вовлечение которых в разработку в настоящее время экономически целесообразно, и забалансовые, вовлечение которых в разработку в настоящее время нецелесообразно или технически и технологически невозможно, но которые в дальнейшем могут быть переведены в балансовые.

В балансовых запасах нефти, растворенного газа, конденсата и содержащихся в них компонентов подсчитываются и учитываются извлекаемые запасы, т.е. часть балансовых запасов, которую можно извлечь при рациональном использовании современной техники и технологии добычи нефти и газа.

Правильный подсчет запасов нефти и газа предполагает раскрытие внутренней структуры подсчетного объекта, знание которой необходимо также для организации эффективной разработки залежей, в частности для выбора структуры системы разработки.

Нефть — это сложная смесь углеводородов (соединений углерода с водородом). В ней обычно преобладают углеводороды метанового ряда, химическая формула которых СпНгп+2. Метан (СН4), молекула которого состоит из одного атома углерода и четырех атомов водорода, — один из самых легких углеводородных газов. В нормальных условиях углеводороды с числом атомов углерода в молекуле до четырех (С4Н10) представляют собой газы, от пяти до шестнадцати (С16Н34) — жидкости, а выше — твердые вещества. В молекулах углеводородных соединений, из которых состоит нефть, может быть до 80 атомов углерода и более. В среднем в нефти содержится около 84 — 85 % углерода и 12—14 % водорода.

В пластовых условиях все углеводороды находятся обычно в жидком состоянии. Со снижением давления и температуры из нефти выделяются газы и тяжелые углеводородные соединения, в частности парафин, который в нормальных условиях представляет собой твердое кристаллическое вещество. В большинстве случаев парафинистые нефти содержат от 2 до 30 % парафина, а также значительное количество асфальто-смолистых веществ. По мере подъема нефти на поверхность парафин и асфальтосмолистые вещества начинают выделяться, отлагаясь на стенках подъемных труб, арматуры и в при-забойной зоне. В качестве примесей в нефти находятся соединения, содержащие кислород, серу и азот и в ничтожных количествах другие элементы (хлор, йод, фосфор, калий и т.д.).

Во многих нефтяных и газовых месторождениях присутствуют сероводород (Н25) и углекислый газ (СО2).

В зависимости от состава нефти плотность ее изменяется от 760 до 960 кг/м3 при температуре 20 °С. На этот параметр существенное влияние оказывают давление и температура в пластовых условиях. В связи с изменением объема нефти под действием растворенного газа и температуры плотность ее в пласте обычно ниже плотности сепарированной нефти. Известны нефти, плотность которых в пластовых условиях меньше 500 кг/м3 при плотности сепарированной нефти 800 кг/м3.

В соответствии с существующими стандартами плотность нефти и нефтепродуктов принято определять при температуре 20 °С, пользуясь понятием относительной плотности, т.е. безразмерной величиной, равной отношению плотности нефти (нефтепродукта) к плотности дистиллированной воды при температуре 4 °С. Эту плотность обозначают д.™. Так как плотность дистиллированной воды при 4 °С равна 1 г/см3, то относительная плотность какого-либо вещества и плотность, выраженная в г/см3, численно равны. Относительная плотность нефтей, добываемых в России, находится в пределах 0,76-0,96.

Вязкость — свойство жидкости или газа оказывать сопротивление перемещению одних ее частиц относительно других. Для характеристики этих сил используется коэффициент внутреннего трения, который называют коэффициентом динамической вязкости ц. За единицу динамической вязкости принят паскаль-секунда (Па-с), т.е. вязкость такой жидкости, в которой на 1 м2 поверхности слоя действует сила, равная 1 Н, если скорость между слоями на расстоянии 1 см изменяется на 1 см/с. Жидкость с вязкостью 1 Па-с относится к числу высоковязких.

В нефтяном деле, так же как и в гидрогеологии и ряде других областей науки и техники, для удобства принято пользоваться единицей вязкости в 1000 раз меньше — милли-паскаль-секунда (мПа-с). Так, пресная вода при температуре 20 °С имеет вязкость 1 мПа-с, а большинство нефтей, добываемых в России, — от 1 до 10 мПа-с, но встречаются нефти и с вязкостью менее 1 мПа-с и в несколько тысяч мПа-с. С увеличением содержания в нефти растворенного газа вязкость заметно уменьшается. Для большинства нефтей, добываемых в России, вязкость при полном выделении из них газа (при постоянной температуре) увеличивается в 2 — 4 раза, а с повышением температуры резко уменьшается. Например, для некоторых нефтей при изменении температуры от 10 до 50 °С вязкость снижается в 3 — 6 раз. Вязкость жидкости характеризуется также коэффициентом кинематической вязкости, т.е. отношением динамической вязкости к плотности жидкости. За единицу в этом случае принят квадратный метр в секунду (м2/с). На практике иногда пользуются понятием условной вязкости, представляющей собой отношение времени истечения из вискозиметра определенного объема жидкости ко времени истечения такого же объема дистиллированной воды при температуре 20 °С.