Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

4 курс / Дерматовенерология / ТРЕГАЛОЗА_ОСОБЕННОСТИ_ХИМИЧЕСКОГО_СТРОЕНИЯ

.pdf
Скачиваний:
1
Добавлен:
23.03.2024
Размер:
245.28 Кб
Скачать

ТРЕГАЛОЗА: ОСОБЕННОСТИ ХИМИЧЕСКОГО СТРОЕНИЯ

281

3.Luyckx J., Baudonin C. Trehalose: an intriguing disac$ charide with potential for medical application in oph$ thalmology // Clin. Ophtalmol. 2011. V. 5. P. 577–581.

4.Richards A.B., Krakowka S., Dexter L.B., Schmid H.,

Wolterbeek A.P., Waalkens<Berendsen D.H., Shigoyuki A., Kurimoto M. Trehalose: a review of prop$ erties, history of use and human tolerance // Food Chem. Toxicol. 2002. V. 40. № 7. P. 871–898.

5.Sols A., Gancedo C., Delafuente G. Energy$yielding me$ tabolism in yeasts // The Yeasts / Eds. Rose C., Harri$ son J.S. L.: Acad. Press, 1971. V. 2. P. 271–307.

6.Бекер М.Е., Дамберг Б.Е., Рапопорт А.И. Анабиоз микроорганизмов. Рига: Зинатне, 1981. 253 с.

7.Souza N.O., Panek A.D. Location of trehalase and treh$ alose in yeast cells // Arch. Biochem. Biophys. 1968.

V.125. P. 2228.

8.Iturriaga S., Suarez R., Nova<Franco B. Trehalose me$ tabolism: from osmoprotection to signaling // Int. J. Mol. Sci. 2009. V. 10. P. 3793–3810.

9.Birch G.G. Trehaloses // Adv. Carbohydr. Chem. / Ed. Wolfrom M.L. NY, London: Acad. Press, 1963. V. 18.

P.201–225.

10.Elbein A.D. The metabolism of α,α$trehalose // Adv. Carbohydr. Chem. Biochem. 1974. V. 30. P. 227–256.

11.Thevelein J.M. Regulation of trehalose mobilization in fungi // Microbiol. Revs. 1984. V. 48. P. 42–59.

12.Crowe J.H., Hoekstra F.A., Crowe L.M. Anhydrobiosis // Annu. Rev. Physiol. 1992. V. 54. P. 579–599.

13.Van Laere A. Trehalose, reserve and/or stress metabo$ lite? // FEMS Microbiol. Rev. 1989. V. 63. P. 201–210.

14.Ferreira J.C., Paschoalin V.M.F., Panek A.D., Trugo L.C.

Comparison of three different methods for trehalose de$ termination in yeast extracts // Food Chem. 1977.

V.60. P. 251–254.

15.Araujo P.S., Panek A.C., Ferreira R., Panek A.D. Deter$ mination of trehalose in biological samples by a simple and stable trehalase preparation // Anal. Biochem. 1989. V. 176. P. 432–436.

16.Motta A., Romano I., Gambacorta A. Rapid and sensitive NMR method for osmolyte determination // J. Microbiol. Methods. 2004. V. 58. P. 289–294.

17.Deslauriers R., Jarrell H.C., Byrd R.A., Smith I.C.P. Ob$ servation by 13C NMR of metabolites in differentiating amoeba. Trehalose storage in encysted Acanthamoeba castellanii // FEBS Lett. 1980. V. 118. P. 185–190.

18.Ohtake S., Wang Y.J. Trehalose: current use and future ap$ plications // J. Pharm. Sci. 2011. V. 100. P. 2020–2053.

19.Richtmyer N.K. Methods in Carbohydrate Chemistry / Eds. Whistler R.L. and Wolfrom M.L. NY–L.: Aca$ demic Press Inc., 1962. V. 1. P. 370–372.

20.Ohta M., Pan I.T., Laine R.A., Elbein A.D. Trehalose$ based oligosaccharides isolated from the cytoplasm of Mycobacterium smegmatis. Relation to trehalose$based oligosaccharides attached to lipids // Eur. J. Biochem. 2002. V. 269. P. 3142–3149.

21.Khan A.A., Stocer B.L., Timmer M.S.M. Trehalose gly$ colipid – synthesis and biological activities // Carbohy$ drat. Res. 2012. V. 356. P. 25–36.

22.Barry C.E., Lee R.E., Mdluli K., Sampson A.E., Schroeder B.G., Slayden R.A., Yuan Y. Mycolic acids:

Structure, biosynthesis and physiological functions // Progr. Lipid Res. 1998. V. 37. P. 143–179.

23.Ioneda T., Lenz M., Pudles J. Chemical constitution of a glycolipid from C. diphtheriae P.W.B. // Biochem. Biophys. Res. Commun. 1963. V. 13. P. 110–114.

24.Penkov S., Mende F., Zagoriy V., Erkut C., Martin R., Pässler U., Schuhmann K., Schwudke D., Gruner M., Mäntler J., Reichert<Müller T., Shevchenko A., Knölker H.<J., Kurzchalia T.V. Maradolipids: Diacyl$ trehalose glycolipids specific to dauer larva in Cae< norhabditis elegans // Angew. Chem., Int. Ed. 2010.

V.49. P. 9430–9435.

25.Schiraldi C., Di Lernia I., De Rosa M. Trehalose pro$ duction: exploiting novel approaches // Trends Biotechnol. 2002. V. 20. P. 420–425.

26.Saito K., Yamazaki H., Ohnishi Y., Fujimoto S., Takahashi E., Horinouchi S. Production of trehalose synthase from basidiomycete, Grifola frondosa, in Es< cherichia coli // Appl. Microbiol. Biotechnol. 1998.

V.50. P. 193–198.

27.Cabib E., Leloir L.F. The biosynthesis of trehalose phos$ phate // J. Am. Chem. Soc. 1957. V. 75. P. 259–275.

28.Nishimoto T., Nakano M., Bnakada T., Chaen H., Fukuda S., Sugimoto T., Kurimoto M., Tsujisaka Y. Pu$ rification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48 // Biosci. Biotach$ nol. Biochem. 1995. V. 60. P. 640–644.

29.Maruta K., Mitsuzumi H., Nakada T., Kubota M., Chaen H., Fukuda S., Sugimoto T., Kurimoto M. Clon$ ing and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius // Biochim. Biophys. Acta. 1996. V. 1291. P. 177–181.

30.Kubota M. Trehalose$producing enzymes // Fine Chem. 2008. V. 37. P. 28–35.

31.Lemieux R.U., Bauer H.F. A chemical synthesis of D$trehalose // Can. J. Chem. 1953. V. 32. P. 340–343.

32.Кретович В.Л. Биохимия растений. М.: Высшая школа, 1986. 503 с.

33.Karim S., Aronsson H., Ericson H., Pirhonen M., Ley< man B., Welin B., Mantyla E., Palva E.T., Van Dijck P., Holmstrom K.O. Improved drought tolerance without undesired side effects in transgenic plants producing trehalose // Plant. Mol. Biol. 2007. V. 64. P. 371–386.

34.Fernandez O., Bethencourt L., Quero A., Sangwan R.S., Clement C. Trehalose and plant stress responses: friend or foe? // Trends Plant Sci. 2010. V. 15. P. 409–417.

35.Hanson J., Smeekens S. Sugar perception and signal$ ing – an update // Curr. Opin. Plant Biol. 2009. V. 19.

P.562–567.

36.Деткова Е.Н., Болтянская Ю.В. Осмоадаптация галофильных бактерий: роль осморегуляторов и возможности их практического применения // Микробиология. 2007. Т. 76. № 5. С. 581–593.

Detkova E.N., Boltyanskaya Yu.V. Osmoadaptation of haloalkaliphilic bacteria: Role of osmoregulators and their possible practical application // Microbiology. 2007. Т. 76. № 5. С. 511–522.

37.Welsh D.T, Herbert R.A. Osmotically induced intracel$ lular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in Escherichia coli // FEMS Microbiol. Lett. 1999. V. 174. P. 57–63.

МИКРОБИОЛОГИЯ том 83 № 3 2014

282

ФЕОФИЛОВА и др.

38.Kandror O., Goldberg A. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essen$ tial for viability at low temperatures // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 9727–9732.

39.Caldas T., Demont<Caulet N., Ghazi A., Richarme G.

Thermoprotection by glycine betaine and choline // Microbiology (UK). 1999. V. 145. P. 2543–2548.

40.Bahn Y.S., Xue C., Idnurm A., Rutherford J.C., Heitman J., Cardenas M.E. Sensing the environment: lessons from fungi // Nat. Rev. Microbiol. 2007. V. 5. № 1. P. 57–69.

41.Barton J.K., Den Hollander J.A., Hopfield J.J., Shulman R.G. 13C nuclear magnetic resonance study of trehalose mobilization in yeast spores // J. Bacteriol. 1982. V. 151. P. 177–185.

42.Лианг Л.К., Вонг К.К., Жу К.Л., Ши З.М. Накопле$ ние трегалозы мутантным штаммом Saccharomycop< sis fibuligera не является стрессовым ответом // Био$ химия. 2006. Т. 71. № 12. С. 1589–1596.

Liang L.K., Wang X.K., Zhu K.L., Chi Z.M. Trehalose accumulation in a high$trehalose$accumulating mu$ tants of Saccharomycopsis fibuligera sdu does not re$ spond to stress treatments // Biochemistry (Moscow). 2006. V. 71. № 12. P. 1291–1297.

43.Феофилова Е.П., Терешина В.М. Термофилия мице$ лиальных грибов с позиций биохимической адап$ тации к температурному стрессу // Прикл. биохи$ мия и микробиология. 1999. Т. 35. № 5. С. 546–556.

Feofilova E.P., Tereshina V.M. Thermophilicity of mycelial fungi in the context of biochemical adaptation to thermal stress // Appl. Biochem. Microbiol. 1999.

V.35. № 5. P. 486–494.

44.Lucio A.K.B., Polizeli M.L.T.M., Jorge J.A., Terenzi H.F.

Stimulation of hyphal growth in anaerobic cultures of Mu< cor rouxii by extracellular trehalose. Relevance of cell wall$bound activity of acid trehalase for trehalose utili$ zation // FEMS Microbiol. Lett. 2000. V. 182. P. 9–13.

45.Мысякина И.С., Сергеева Я.Э., Ивашечкин А.А., Феофилова Е.П. Влияние эффекторов морфогене$ за на характер роста и состав липидов мицелия и дрожжеподобных клеток гриба Mucor hiemalis // Микробиология. 2012. Т. 81. № 6. С. 733–740.

Mysiakina I.S., Sergeeva Ya.E., Ivashechkin A.A., Feofilova E.P. Impact of morphogenetic effectors on the growth pattern and the lipid composition of the mycelium and the yeastlike cells of the fungus Mucor hiemalis // Microbiology. 2012. V. 81. P. 676–683.

46.Ngamskulrungroj P., Himmelreich U., Breger J.A., Wilson C., Chayakulkeeree M., Krockenberger M.B., Ma< lik R., Daniel H.<V., Toffaletti D., Djordjevic J.T., Mylonakis E., Meyer W., Perfect J.R. The trehalose syn$ thesis pathway is an integral part of the virulence com$ posite for Cryptococcus gattii // Infect. Immun. 2009.

V.77. P. 4584–4596.

47.Zaragoza O., Blazquez M.A., Gancedo C. Disruption of the Candida albicans TPS1 gene, encoding trehalose$6$ phosphate synthase impairs formation of hyphae and decreases infectivity // J. Bacteriol. 1998. V. 180.

P.3809–3815.

48.Al<Bader N., Vanier G., Hong Liu, Gravelat F.N., Urb M., Hoareau C.M.<Q., Campoli P., Chabot J., Filler S.G., Shep< pard D.C. Role of trehalose biosynthesis in Aspergillus fu< migates development, stress response, and virulence // Infect. Immun. 2010. V. 78. P. 3007–3018.

49.Pedreño Y., Gonzalez<Parraga P., Martinez<Esparza M., Sentandreu R., Valentin E., Argüelles J.<C. Disruption of the Candida albicans ATC1 gene encoding a cell$linked acid trehalase decreases hypha formation and infectivi$ ty without affecting resistance to oxidative stress // Mi$ crobiology (UK). 2007. V. 153. P. 1372–1381.

50.Wiemken A. Trehalose in yeast, stress protectant rather than reserve carbohydrate // Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 1990. V. 59. P. 209–217.

51.D’Amore T., Crumplen R., Stewart G.G. The involvement of trehalose in yeast stress tolerance // J. Ind. Microbiol. 1991. V. 7. P. 191–196.

52.Sampedro J.G., Guerra G., Pardo J.<P., Uribe S. Treha$ lose$mediated protection of the plasma membrane H+$ ATPase from Kluyveromyces lactis during freeze$drying and rehydration // Cryobiol. 1998. V. 37. P. 131–138.

53.Ribeiro M.J.S., Leao L.S.C., Morais P.B., Rosa C.A., Panek A.D. Trehalose accumulation by tropical yeast strains submitted to stress conditions // Antonie van Leeuwenhoek. 1999. V. 75. P. 245–251.

54.Saharan R.K., Sharma S.C. Correlation studies of treh$ alose with oxidative stress in ethanol stressed yeast Pachysolen tannophilus // Curr. Res. J. Biol. Sci. 2010.

V.2. P. 300–305.

55.Nicolaus B., Gambacorta F., Basso A.L., Riccio R., DeRosa M., Grant W.D. Trehalose in archebacteria sys$ tems // Appl. Microbiol. 1988. V. 10. P. 215–217.

56.Sampedro J.G., Uribe S. Trehalose$enzyme interactions result in structure stabilization and activity inhibition. The role of viscosity // Mol. Cell. Biochem. 2004.

V.256/257. P. 319–327.

57.Tsvetkov T.D., Tsonev L.I., Tsvetkova N.M., Koynova R.D., Tenchov B.G. Effect of trehalose on the phase properties of hydrated and lyophilized dipalmitoylphosphatidylcholine multilayers // Cryobiol. 1989. V. 26. P. 162–169.

58.Хукстра Ф.А., Головина Е.А. Поведение мембран при гидратации и устойчивость ангидробиотиче$ ских организмов к обезвоживанию // Физиология растений. 1999. Т. 46. № 3. С. 347–361.

Hoekstra F.A., Golovina E.A. Membrane behavior during dehydration: implications for desiccation tolerance // Russian J. Plant Physiol. 1999. V. 46. № 3. P. 295–306.

59.Феофилова Е.П., Терешина В.М., Горнова И.Б. Из$ менения в углеводном составе клеток грибов в свя$ зи с адаптацией к температурному стрессу // Мик$ робиология. 1994. Т. 63. № 5. С. 792–796.

Feofilova E.P., Tereshina V.M., Gornova I.B. Change in carbohydrate during adaptation to thermostress // Mi$ crobiology. 1994. V. 63. № 5. P. 442–445.

60.Феофилова Е.П., Кузнецова Л.С. Влияние антиок$ сидантов на рост и состав липидов Cunninghamella japonica в норме и под действием стрессора // Микробиология. 1996. Т. 65. № 4. С. 467–473.

Feofilova E.P., Kuznetsova L.S. Effect of antioxidants on the growth and lipid composition of Cunninghamella japonica under normal and stress conditions // Micro$ biology. 1996. Т. 65. № 4. С. 409–414.

61.Benaroudj N., Lee D.H., Goldberg A.L. Trehalose accu$ mulation during cellular stress protect cells and cellular proteins from damage by oxygen radicals // J. Biol. Chem. 2001. V. 276. P. 24261–24267.

МИКРОБИОЛОГИЯ том 83 № 3 2014

ТРЕГАЛОЗА: ОСОБЕННОСТИ ХИМИЧЕСКОГО СТРОЕНИЯ

283

62.Феофилова Е.П., Бурлакова Е.Б., Кузнецова Л.С.

Значение реакций свободнорадикального окисле$ ния в регуляции роста и липидообразования эукари$ отных и прокартотных организмов // Прикл. биохи$ мия и микробиология. 1987. Т. 23. № 1. С. 3–13.

63.Higashiyama T. Novel functions and applications of tre$ halose // Pure Appl. Chem. 2002. V. 74. P. 1263–1269.

64.Oku K., Watanabe H., Kubota M., Fukuda S., Kurimo<

to M., Tsujisaka Y., Komori M., Inoue Y., Sakurai M.

NMR and quantum chemical study on the OHπ and CHO interactions between trehalose and unsaturated fatty acids: implication for the mechanism of antioxi$ dant function of trehalose // J. Amer. Chem. Soc. 2003. V. 125. P. 12739–12748.

65.Kubota M. New features and properties of trehalose // New Food Industry. 2005. V. 47. P. 17–29.

66.Zhang Y., Zhang T., Chi Z., Wang J.<M., Liu G.<L., Chi Z.<M. Conversion of cassava starch to trehalose

by Saccharomycopsis fibuligera A11 and purification of trehalose // Carbohydr. Polym. 2010. V. 80. P. 13–18.

67.Chang S.W., Liu P.T., Hsu L.C., Chen C.S., Shaw J.F.

Integrated biocatalytic process for trehalose production and separation from rice hydrolysate using a bioreactor system // Food Chem. 2012. V. 134. P. 1745–1753.

68.Patist A., Zoerb H. Preservation mechanisms of treha$ lose in food and biosystems // Colloids and Surfaces B: Biointerfaces. 2005. V. 40. P. 107–113.

69.Matsuo T. Trehalose protects corneal epithelial cells from death by drying // J. Ophthalmol. 2001. V. 85. P. 610–612.

70.Han S.F., Park S. R., Kwon H.B., Yi B.Y., Lee G.B., Byun M.O. Genetic engineering of drought resistant to$ bacco plant by introducing the trehalose phosphorylase (TP) gene from Pleurotus sajor<caju// Plant Cell Tissue and Organ Culture. 2005. V. 82. P. 157–158.

Trehalose: Chemical Structure, Biological Functions, and Practical Application

E. P. Feofilovaa, 1, A. I. Usovb, I. S. Mysyakinaa, and G. A. Kochkinac

a Winogradsky Institute of Microbiology, Russian Academy of Sciences, pr. 60<letiya Oktyabrya 7, k. 2, Moscow, 117312 Russia

b Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninskii prospekt 47 Moscow, 119991 Russia

c Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, Moscow oblast, 142290 Russia

Received April 23, 2013

Abstract—Up$to$date information concerning the chemical structure and properties of trehalose, its natural occurrence and biological functions in plants, fungi, and prokaryotes, as well as its practical application, mainly in medicine and biotechnology, are reviewed. A special section deals with the role of trehalose and other protective polyols in stress processes in fungi.

Keywords: trehalose, protector carbohydrates, microorganisms, mycelial fungi, bacteria

1 Corresponding author; e$mails: feofilov@inmi.host.ru, biolog100@bk.ru

МИКРОБИОЛОГИЯ том 83 № 3 2014