Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

4 курс / Фак. Педиатрия, эндокринология / Кафедра №1 / Outside-to-Inside (and Now Back to Outside) Pathogenic Mechanisms in Atopic Dermatitis

.pdf
Скачиваний:
11
Добавлен:
28.09.2023
Размер:
206.8 Кб
Скачать

COMMENTARY

Wilson NJ, Boniface K, Chan JR, McKenzie BS,

antimicrobial defense, cellular differentiation,

Blumenschein WM, Mattson JD et al. (2007)

and mobility in keratinocytes: a potential role

Development, cytokine profile and function

in psoriasis. Eur J Immunol 36:1309–23

of human interleukin 17-producing helper

Zheng Y, Danilenko DM, Valdez P, Kasman

T cells. Nat Immunol 8:950–7

I, Eastham-Anderson J, Wu J et al. (2007)

 

Wolk K, Witte E, Wallace E, Docke WD, Kunz

Interleukin-22, a T(H)17 cytokine, mediates

S, Asadullah K et al. (2006) IL-22 regulates

IL-23-induced dermal inflammation and

the expression of genes responsible for

acanthosis. Nature 445:648–51

See related article on pg 1329

“Outside-to-Inside” (and Now Back to “Outside”) Pathogenic Mechanisms in Atopic Dermatitis

Peter M. Elias1,2 and Martin Steinhoff2,3

The pathogenesis of atopic dermatitis (AD) has been attributed largely to abnormalities in the adaptive immune system, with key roles played by T-help- er 1(Th1)/Th2 cell dysregulation, IgE production, dendritic cell signaling, and mast-cell hyperactivity, resulting in the pruritic, inflammatory dermatosis that characterizes AD (Leung et al., 2004). Accordingly, therapy has been focused on ameliorating Th2-mediated inflammation and pruritus (e.g., Leung, 2000). Indeed, there is emerging evidence that inflammation in AD results first from inherited and acquired insults that converge to alter epidermal structure and function, followed by immune system activation, which in turn has negative consequences for skin-barrier homeostasis. This cycle comprises an “outside– inside–outside” model of AD pathogenesis (Elias et al., in press).

Journal of Investigative Dermatology (2008), 128, 1067–1070. doi:10.1038/jid.2008.88

The epidermis generates an impressive set of critical defensive functions (Elias, 2005; Elias and Choi, 2005) that include the permeability barrier, allowing survival in a potentially desiccating external environment, and an antimicrobial barrier, which simultaneously encourages colonization by nonpathogenic “normal” flora while resisting growth of microbial pathogens (Elias, 2007). The permeability barrier resides in the stratum corneum (SC), where multiple layers of anucleate corneocytes are embedded in an extracellular matrix, enriched in ceramides (Cer), cholesterol, and free fatty acids, arranged as planar lamellar sheets (Elias and Menon, 1991). These lipids, as well as an assortment of hydrolases

important for lipid processing and desquamation and at least two key antimicrobial peptides (Aberg et al., 2007, and references cited therein), are delivered to the extracellular matrix through secretion of epidermal lamellar body contents. Whereas lamellar body– derived proteases and their inhibitors orchestrate the orderly digestion of corneodesmosomes, allowing cells to shed invisibly at the skin surface (Brattsand et al., 2005; Stefansson et al., 2008), the lipid-processing enzymes (β-gluco- cerebrosidase, acidic sphingomyelinase, and secretory phospholipase A2) generate the Cer and free fatty acids that, along with cholesterol, form the extracellular lamellar membrane (Elias and Menon, 1991). Thus, proteases as

1Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, California, USA; 2Department of Dermatology, University of California, San Francisco, California, USA; 3Department of Dermatology, University of Muenster, Muenster, Germany

Correspondence: Dr Peter M. Elias, Dermatology Service (190), VA Medical Center, 4150 Clement Street, San Francisco, California 94121, USA. E-mail: eliasp@derm.ucsf.edu

well as extracellular enzymes may ultimately be involved in the pathophysiology of eczema and pruritus.

Based primarily on the strong association of inherited abnormalities in filaggrin (FLG) expression, atopic dermatitis (AD), at least in Euro-Americans, is now increasingly considered a primary disorder of SC structure and function (Hudson, 2006; Irvine and McLean, 2006; Palmer et al., 2006; Smith et al., 2006; Weidinger et al., 2006). Thus, AD can be considered a disease of primary barrier failure, characterized by both a defective permeability (Proksch et al., 2006, and references therein) and antimicrobial function (Baker, 2006; Boguniewicz and Leung, 2006). Although both of these abnormalities are well-recognized features of AD, they have been widely assumed to reflect downstream consequences of a primary immunologic abnormality (the historical inside–outside view of AD pathogenesis). We and others have long proposed that the permeability-bar- rier abnormality in AD is not merely an epiphenomenon but rather the “driver” of disease activity (i.e., the reverse, outside–inside view of disease pathogenesis) (Elias and Feingold, 2001), because (1) the extent of the permeabil- ity-barrier abnormality parallels severity of disease phenotype in AD, (2) both clinically uninvolved skin sites and skin cleared of inflammation for as long as

|Inflammation in AD may begin with insults from without.

5 years continue to display significant barrier abnormalities, (3) emollient therapy comprises effective ancillary therapy, and (4) specific replacement therapy, which targets the prominent lipid abnormalities that account for the barrier abnormality in AD, not only corrects the permeability-barrier abnormality but also comprises effective antiinflammatory therapy for AD (Chamlin et al., 2002; Figure 1).

Still, how loss of FLG (an intracellular protein) provokes a permeability-bar-

www.jidonline.org 1067

COMMENTARY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S. aureus

 

 

 

 

 

 

 

 

 

 

 

 

stored in large quantities in the cytosol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

colonization

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of corneocytes (Hachem et al., 2002;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nylander-Lundqvist et al., 1996), the

 

 

 

 

 

 

 

 

 

 

 

Cer, free

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

first step in the cytokine cascade that

Acquired stressors

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Toxin- + superantigen-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we

propose initiates inflammation in

 

fatty acids,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pH,

 

RH,

 

PS

 

sphingosine

 

 

AMP

 

 

 

 

 

 

 

 

producing S. aureus

 

AD (Figure 2).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another cause of inflammation in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD doubtless includes sustained anti-

Sustained barrier defect

Th1

 

Th2

 

AD lesion

 

 

 

 

 

 

 

 

 

 

Folliculitus/

 

 

gen

ingress through a

defective bar-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

impetigo

 

rier, leading to a T-helper 2 (Th2)-domi-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nant infiltrate (Hudson, 2006). Yet FLG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cer synthesis

 

 

 

 

 

T- B-cell

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mutations alone do not provoke AD, as

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

activation

 

 

 

 

 

 

 

 

 

 

 

 

Inhereited

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keratinocytes

 

demonstrated in ichthyosis vulgaris, in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

defects

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pruritus

 

 

 

 

protease

 

which the same singleor double-allele

 

 

FLG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dysregulation

 

FLG mutations reduce FLG content, but

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LEKTI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

neuropeptides

 

inflammation (i.e., AD) does not inevi-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specific Ige

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tably occur (Sandilands et al., 2007).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We

and others

have

suggested that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scratching/excoriations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

certain acquired stressors could elic-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Secondary infections can further aggravate barrier abnormality in atopic dermatitis.

it disease by aggravating the

barrier

abnormality. Indeed, a

barrier-depen-

AD, atopic dermatitis; AMP, adenosine monophosphate; Cer, ceramide; FLG, filaggrin; LEKTI,

dent increase in pH (and serine protease

lymphoepithelial Kazal-type related trypsin inhibitor; PS, psychological stress; RH, relative humidity;

Th1,T-helper 1;Th2,T-helper 2 (Modified from Elias et al., in press.)

 

 

 

 

 

 

 

 

 

 

activity) likely accounts for the precipi-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tation of AD following the use of neu-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tral-to-alkaline soaps (Figure 1) (Cork et

rier abnormality is not known. In addi-

the multiple serine proteases in SC,

al., 2006). Likewise, prolonged expo-

tion, it is not clear what drives barrier

which all exhibit neutral-to-alkaline

sure to reduced environmental humid-

dysfunction in the skin of AD patients

pH optima (Brattsand et al., 2005;

ity, a well-known risk factor for AD,

without a FLG mutation. Although it

Stefansson et al., 2008; Steinhoff et al.,

likely accelerates transcutaneous water

has been hypothesized that loss of FLG

2005). Increased serine protease activ-

loss rates across defective SC in AD,

could

cause

corneocyte

deformation,

ity could generate the active forms of

further aggravating the barrier abnor-

the barrier

abnormality

more

likely

the primary cytokines IL-1α and IL-1β

mality.

Finally,

psychological

stress,

is linked to lack of FLG as a substrate

from their 33-kDa pro-forms, which are

which

aggravates permeability-barrier

for proteolytic processing and further

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

deimination into polycarboxylic acids,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

such as pyrrolidine carboxylic acid and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trans-urocanic acid. These metabo-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Barrier

 

 

 

 

 

 

lites normally act as osmolytes (natural

 

 

 

 

 

 

 

 

 

 

 

 

 

 

perturbation

 

 

 

 

 

 

moisturizing

factors),

drawing

water

Stratum corneum

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

into corneocytes, partially account-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ing for corneocyte hydration. Hence,

 

Inhibitory Ions

 

 

 

 

 

 

 

Cer, FLG

Cytokines/growth factor

Proteases

the most immediate result of FLG defi-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ciency is decreased SC hydration, a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

well-recognized feature of AD. A steep-

 

Lamellar body

 

 

 

 

 

 

 

Lipid and hBD2

 

 

DNA synthesis

 

 

er water gradient would inexorably

 

 

 

secretion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

accelerate transcutaneous

 

water

 

loss,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

particularly if a paucity of extracellular

 

 

Epidermis

 

Permeability and antimicrobial

 

Epidermal

 

Cytokines/

lipids results in decreased water-retain-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

barrier restoration

 

 

hyperplasia

 

growth factors

ing ability. However, either corneocyte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

flattening or decreased SC hydration

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chemokines

 

 

can suffice to enhance antigen penetra-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tion. We suspect that another mecha-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nism

is

operative, because another

 

 

 

Dermis

 

 

 

 

 

 

 

 

Th2 cytokines

 

 

 

 

 

inevitable

consequence

of decreased

 

 

 

 

 

 

 

 

 

 

 

 

Inflammation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downstream production of polycarbox-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ylic acid metabolites is an increase in

Figure 2.“Outside–inside–outside” model ofAD. Cer, ceramide; FLG, filaggrin; hBD2, human β-defensin-2;

the SC pH (Krien and Kermici, 2000),

Th2,T-helper 2. (From Figure 2. Cer, ceramide; FLG, filaggrin; hBD2, human β-defensin-2;Th2,T-helper 2.

sufficient

to

increase

the

activities of

(From Steinhoff et al., 2005; modified from Elias et al., in press.)

 

 

 

 

1068 Journal of Investigative Dermatology (2008), Volume 128

COMMENTARY

function in humans (Altemus et al., 2001), is both a well-known precipitant of AD and a cause of resistance to therapy. Moreover, a dysregulation of proteases, highly expressed by keratinocytes, protease inhibitors, and protease-acti- vated receptors, may be important for neuronal–epidermal communication during barrier dysfunction (Demerjian et al., 2008; Hachem et al., 2006; Steinhoff et al., 2000, 2005).

Despite accumulating evidence in support of a barrier-initiated pathogenesis of AD, recent studies suggest specific mechanisms whereby Th2generated cytokines could also further aggravate AD. As described in this issue by Kurahashi et al. (2008), exogenous applications of the Th2 cytokine, IL-4, impede permeability-barrier recovery after acute perturbations. The basis for the negative effects of IL-4 could include the prior observation by these authors that exogenous IL-4 inhibits Cer synthesis (Hatano et al., 2005). But IL-4 also inhibits expression of both FLG (Howell et al., 2007) and desmoglein 3 (Kobayashi et al., 2004), which also could further compromise barrier function, completing a potential out- side–inside–outside pathogenic loop in AD (Figure 2). Furthermore, nerves may be activated by “barrier stressors” such as UV light, toxic or allergic agents, and microbial agents. Therefore, nervederived mediators could also modulate enzyme production, antimicrobial peptide (defensin) generation, pH changes, or SC humidity, thereby influencing keratinocyte function (Paus et al., 2006; Roosterman et al., 2006; Steinhoff et al., 2006).

Together, the converging pathogenic features described above create a strong rationale for the deployment of specific strategies to restore barrier function in AD. When used under nursing supervision, moisturizers have been shown to reduce topical steroid usage (Cork et al., 2003). Of various barrier-repair approaches, a mixture of the three SC lipids in a Cer-dominant formulation (TriCeram, Osmotics Cosmeceuticals) demonstrated improved clinical status, permeability-barrier function, and SC integrity when this technology was substituted for standard moisturizers in children with severe, recalcitrant AD

(Chamlin et al., 2002). More recently, a higher-strength, FDA cleared formulation (EpiCeram cream, Ceragenix Pharmaceuticals) demonstrated efficacy that was comparable to that of a midpotency steroid (fluticasone; Cutivate cream) in an investigator-blinded, multicenter clinical trial of pediatric patients with moderate to severe AD (Sugarman and Parish, in press). These studies, although still preliminary, suggest that correction of the lipid biochemical abnormality that is responsible for the barrier defect in AD could also downregulate the further inside- to-outside alterations provoked by IL-4 and could comprise a new or ancillary approach to the therapy of AD.

CONFLICT OF INTEREST

Dr Elias is a co-inventor of Cer-dominant formulation (TriCeram, Osmotics Corp.), a patented technology, and an officer of Ceragenix Pharmaceuticals, the licensee of this technology. Dr Steinhoff states no conflict of interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the superb editorial assistance of Joan Wakefield and Jerelyn Magnusson, including preparation of the graphics. This work was supported by National Institutes of Health grant AR19098, Department of Defense grant W81XWH-05-2-0094, and the Medical Research Service, Department ofVeterans Affairs, grants DFG (STE 1014/2-2) (M.S.) and SFB 293 (M.S.). No company provided support for this article.

REFERENCES

Aberg KM, Radek KA, Choi EH, Kim DK, Demerjian M, Hupe M et al. (2007) Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice. J Clin Invest 117:3339–49

Altemus M, Rao B, Dhabhar FS, DingW, Granstein RD (2001) Stress-induced changes in skin barrier function in healthy women. J Invest Dermatol 117:309–17

Baker BS (2006) The role of microorganisms in atopic dermatitis. Clin Exp Immunol 144:1–9

Boguniewicz M, Leung DY (2006) Atopic dermatitis. J Allergy Clin Immunol 117: S475–80

Brattsand M, Stefansson K, Lundh C, Haasum Y, Egelrud T (2005) A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol 124:198–203

Chamlin SL, Kao J, Frieden IJ, Sheu MY, Fowler AJ, Fluhr JW et al. (2002) Ceramide-dominant barrier repair lipids alleviate childhood atopic dermatitis: changes in barrier function provide a sensitive indicator of disease activity. J Am Acad Dermatol 47:198–208

Cork MJ, Britton J, Butler L, Young S, Murphy R, Keohane SG (2003) Comparison of parent

knowledge, therapy utilization and severity of atopic eczema before and after explanation and demonstration of topical therapies by a specialist dermatology nurse. Br J Dermatol 149:582–9

Cork MJ, Robinson DA,VasilopoulosY, FergusonA, Moustafa M, MacGowan A et al. (2006) New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene–environment interactions. J Allergy Clin Immunol 118:3–21; quiz 22–3

Demerjian M, Hachem JP,Tschachler E, Denecker G, Declercq W, Vandenabeele P et al. (2008) Acute modulations in permeability barrier function regulate epidermal cornification: role of caspase-14 and the protease-activated receptor type 2. Am J Pathol 172:86–97

Elias PM (2005) Stratum corneum defensive functions: an integrated view. J Invest Dermatol 125:183–200

Elias PM (2007) The skin barrier as an innate immune element. Semin Immunopathol 29: 3–14

Elias PM, Choi EH (2005) Interactions among stratum corneum defensive functions. Exp Dermatol 14:719–26

Elias PM, Feingold KR (2001) Does the tail wag the dog? Role of the barrier in the pathogenesis of inflammatory dermatoses and therapeutic implications. Arch Dermatol 137:1079–81

Elias PM, Menon GK (1991) Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res 24:1–26

Elias P, Hatano Y, Williams M (in press) Basis for the barrier abnormality in atopic dermatitis: “outside–inside–outside” pathogenic mechanisms. J Allergy Clin Immunol

Hachem JP, Fowler A, Behne M, Fluhr J, Feingold KR, Elias PM (2002) Increased stratum corneum pH promotes activation and release of primary cytokines from the stratum corneum attributable to activation of serine proteases. J Invest Dermatol 119:207–350, abstr 306

Hachem JP, Houben E, Crumrine D, Man MQ, Schurer N, Roelandt T et al. (2006) Serine protease signaling of epidermal permeability barrier homeostasis. J Invest Dermatol 126:2074–86

Hatano Y, Terashi H, Arakawa S, Katagiri K (2005) Interleukin-4 suppresses the enhancement of ceramidesynthesisandcutaneouspermeability barrier functions induced by tumor necrosis factor-alpha and interferon-gamma in human epidermis. J Invest Dermatol 124:786–92

Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, Debenedetto A et al. (2007) Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 120:150–5

Hudson TJ (2006) Skin barrier function and allergic risk. Nat Genet 38:399–400

Irvine AD, McLean WH (2006) Breaking the (un)sound barrier: filaggrin is a major gene for atopic dermatitis. J Invest Dermatol 126: 1200–2

Kobayashi J, Inai T, Morita K, Moroi Y, Urabe K, ShibataY et al. (2004) Reciprocal regulation of permeability through a cultured keratinocyte

www.jidonline.org 1069

COMMENTARY

sheet by IFN-gamma and IL-4. Cytokine 28:186–9

Krien PM, Kermici M (2000) Evidence for the existence of a self-regulated enzymatic process within the human stratum corneum— an unexpected role for urocanic acid. J Invest Dermatol 115:414–20

Kurahashi R, Hatano Y, Katagiri K (2008) IL- 4 suppresses the recovery of cutaneous permeability barrier functions in vivo. J Invest Dermatol. 128:1329–31

Leung DY (2000) Atopic dermatitis: new insights and opportunities for therapeutic intervention. J Allergy Clin Immunol

105:860–76

Leung DY, Boguniewicz M, Howell MD, Nomura I, Hamid QA (2004) New insights into atopic dermatitis. J Clin Invest 113:651–7

Nylander-Lundqvist E, Back O, Egelrud T (1996) IL-1 beta activation in human epidermis. J Immunol 157:1699–704

Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP et al. (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38:441–6

Paus R, Schmelz M, Biro T, Steinhoff M (2006) Frontiers in pruritus research: scratching the brain for more effective itch therapy. J Clin Invest 116:1174–86

Proksch E, Folster-Holst R, Jensen JM (2006) Skin barrier function, epidermal proliferation and differentiation in eczema. J Dermatol Sci 43:159–69

Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M (2006) Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev 86:1309–79

Sandilands A, Terron-Kwiatkowski A, Hull PR, O’Regan GM, Clayton TH, Watson RM et al. (2007) Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet 39:650–4

Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y et al. (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38:337–42

Stefansson K, Brattsand M, Roosterman D, Kempkes C, Bocheva G, Steinhoff M et al. (2008) Activation of proteinase-activated receptor-2 by human kallikrein-related

peptidases. J Invest Dermatol 128:18–25

Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS et al. (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 6:151–8

Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N et al. (2005) Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response.

Endocr Rev 26:1–43

Steinhoff M, Bienenstock J, Schmelz M, Maurer M, Wei E, Biro T (2006) Neurophysiological, neuroimmunological, and neuroendocrine basis of pruritus. J Invest Dermatol 126: 1705–18

Sugarman J, Parish LJ (2008) A topical lipid-based barrier repair formulation (EpiCeram) cream is high-effective monotherapy for moderate- to-severe pediatric atopic dermatitis. J Invest Dermatol 128 (Suppl. 1):S54 [Abstract]

Weidinger S, Illig T, Baurecht H, Irvine AD, Rodriguez E, Diaz-LacavaA et al. (2006) Loss- of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. J Allergy Clin Immunol 118:214–9

1070 Journal of Investigative Dermatology (2008), Volume 128