Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Luchevaya_diagnostika

.pdf
Скачиваний:
115
Добавлен:
13.02.2015
Размер:
534.14 Кб
Скачать

В настоящее время все КС делятся на:

1.рентгенологические

2.МРТ - контрастные вещества

3.УЗ - контрастные вещества

4.флюоресцирующие (для маммографии).

С практической точки зрения КС целесообразно подразделить на: 1) традиционные рентгенологические и КТконтрастные средства, а также нетрадиционные, в частности, созданные на основе сернокислого бария.

Традиционные рентгеноконтрастные средства делятся на: а) негативные (воздух, кислород, углекислый газ и др.), б) позитивные, хорошо поглощающие рентгеновские лучи. Контрастные средства этой группы ослабляют излучение в 50-1000 раз по сравнению с мягкими тканями. Позитивные КС в свою очередь делятся на растворимые в воде (йодистые препараты) и нерастворимые в воде (сульфат бария).

Йодистые контрастные средства - их переносимость больными объясняется двумя факторами: 1) осмолярностью и 2) хемотоксичностью, включая и ионное воздействие. Для снижения осмолярности был предложен: а) синтез ионных димерных КС и б) синтез неионных мономеров. Например, ионные димерные КС были гиперосмолярными (2000 м моль/л.), тогда как ионные димеры и неионные мономеры уже имели осмолярность значительно ниже (600-700 м моль/л), снизилась и их хемотоксичность. Неионный мономер «Омнипак» начал применяться с 1982 года и судьба его сложилась блестяще. Из неионных димеров «Визипак» - следующий шаг в развитии идеальных КС. Он обладает изоосмолярносггью, т.е. его осмолярность равна плазме крови (290 м моль/л). Неионные димеры больше всех КС на данном этапе развития науки и технологий соответствуют понятию «Идеальные контрастные средства».

КС для РКТ. В связи с широким распространением РКТ стали разрабатываться КС селективного контрастирования для различных органов и систем, в частности, почек, печени, так как современные водорастворимые холецистографические и урографические КС оказались недостаточными. В определенной степени требованиям КС при РКТ отвечает «Йозефанат». Это КС избирательно концентрируется в ф)тткционирующих гепатоцитах и может использоваться при опухолях и циррозах печени. Хорошие отзывы поступают и при использовании «Визипака», а также капсулированного «Йодиксанола». Все эти КС при КТ перспективны при визуализации мегастазов печени, карцином печени, гемангиом.

Как ионные, так и неионные (в меньшей степени) могут вызвать реакции и осложнения. Побочные действия йодсодержащих КС составляют серьезную проблему. По данным международной статистики, поражение почек КС остается одним из основных видов ятрогенной почечной недостаточности, составляющей около 12% госпитальной острой почечной недостаточности. Васкулярная боль при в/в введении препарата, ощущение жара во рту, горький вкус, озноб, покраснение, тошнота, рвота, боль в животе, учащение пульса, ощущение тяжести в грудной клетке - далеко неполный перечень раздражающего действия КС. Может быть остановка сердца и дыхания, в отдельных случаях наступает смерть. Отсюда, различают три степени тяжести побочных реакций и осложнений:

1)легкие реакции («горячие волны», гиперемия кожных покровов, тошнота, небольшая тахикардия). Медикаментозной терапии не требуется;

2)средняя степень (рвота, сыпь, коллапс). Назначаются с/с и противоаллергические средства;

3)тяжелые реакции (анурия, поперечный миелит, остановка дыхания и сердца). Предсказать заранее реакции невозможно. Все предложенные методы профилактики оказались неэффективными. В последнее время предлагают пробу «на кончике иглы». В ряде случаев рекомендуется премедикация, в частности преднизалоном и его производными.

В настоящее время лидерами качества среди КС являются «Омнипак» и «Ультравист», которые обладают высокой местной переносимостью, общей низкой токсичностью, минимальными гемодинамическими действиями и высоким качеством изображения. Используются при урографии, ангиографии, миелографии, при исследовании ЖКТ и др.

Рентгеноконтрастные вещества на основе сернокислого бария. Первые сообщения об использовании водной взвеси сернокислого бария в качестве КС принадлежат Р. Краузе (1912г.). Сернокислый барий хорошо поглощает рентгеновы лучи, легко смешивается в различных жидкостях, не растворяется и не образует различных соединений с секретами пищеварительного канала, легко измельчается и позволяет получать взвесь необходимой вязкости, хорошо прилипает к слизистой оболочке. На протяжении 80-ти с лишним лет совершенствуется методика приготовления водной взвеси сернокислого бария. Основные требования её сводятся к максимальной концентрации, мелкодисперстности и адгезивности. В связи с этим предложено несколько методов приготовления водной взвеси сернокислого бария:

1)Кипячение (1 кг бария подсушивают, просеивают, добавляют 800 мл воды и кипятят в течении 10-15 минут. Затем пропускают через марлю. Такая взвесь может храниться 3-4 дня);

2)Для достижения высокой дисперстности, концентрации и вязкости в настоящее время широко используют высокоскоростные смесители;

3)На вязкость и контрастность большое влияние оказывают различные стабилизирующие добавки (желатин, карбоксиметилцеллюлоза, слизь семени льна, крахмал и др.);

4)Использование ультразвуковых установок. При этом взвесь остается гомогенной и практически сульфат бария долгое время не оседает;

5)Использование патентованных отечественных и зарубежных препаратов с различными стабилизирующими веществами, вяжущими средствами, вкусовыми добавками. Среди них заслуживают внимание - баротраст, миксобар, сульфобар и др.

Эффективность двойного контрастирования повышается до 100% при использовании следующей композиции: сульфат бария - 650 г, цитрат натрия - 3,5 г, сорбит - 10,2 гр., антифосмилан -1,2 г, вода-100 г.

Взвесь сернокислого бария безвредна. Однако, при попадании в брюшную полость и в дыхательные пути возможны токсические реакции, при стенозах - развитие непроходимости.

К нетрадиционным йоднесодержапгим КС относятся магнитные жидкости - ферромагнитные суспензии, которые перемещаются в органах и тканях внешним магнитным полем. В настоящее время имеется ряд композиций на основе ферритов магния, бария, никеля, меди, суспенизрованных в жидком водном носителе, содержащим крахмал, поливиниловый спирт и другие вещества с добавлением пудры металлических окислов бария, висмута и других химических веществ. Изготовлены специальные аппараты с магнитным устройством, способные управлять этими КС.

Считается, что ферромашитные препараты могут применяться в ангиографии, бронхографии, сальпингографии, гастрографии. Пока широкого распространения этот метод в клинической практике не получил.

В последнее время среди нетрадиционных КС заслуживают внимания биодеградирующие контрастные средства. Это препараты на основе липосом (яичный лецитин, холестерин и др.), депонирующиеся избирательно в различных органах, в частности в клетках РЭС печени и селезенки (йопамидол, метризамид и др.). Синтезированы и бромированк ые липосомы для КТ, которые выделяются почками. Предложаны КС на основе перфторуглеродистых и других нетрадиционных химических элементов, таких как тантал, вольфрам, молибден. К о об их практическом применении пока говорить рано.

Таким образом, в современной клинической практике используются в основном два класса рентгеновских КС - йодированные и сульфат бария.

Парамагнитные КС для МРТ. Для МРТ в настоящее время широкое распространение в качестве парамагнитного контрастного средства нашел «Магневист». Последний укорачивает время спинрешетчатой релаксации возбужденных ядер атомов, что увеличивает интенсивность сигнала и повышает контрастность изображения тканей. После в/в введения он быстро распределяется во внеклеточном пространстве. Выделяется из организма главным образом почками с помощью клубочковой фильтрации.

Область применения. Применение «Магневиста» показано при исследовании органов ЦНС, с целью обнаружения опухоли, а также для дифференциальной диагностики при подозрении на опухоль мозга, невриному слухового нерва, глиому, метастазы опухолей и др. С помощью «Магневиста» достоверно выявляют степень поражения головного и спинного мозга при рассеянном склерозе и контролируют эффективность проводимого лечения. «Магневист» используют в диагностике и дифференциальной диагностике опухолей спинного мозга, а также для выявления распространенности новообразований. «Магневист» используют и при проведении МРТ всего тела, включая исследование лицевого черепа, области шеи, грудной и брюшной полостей, молочных желез, тазовых органов, опорно-двигательного аппарата.

Для ультразвуковой диагностики в настоящее время созданы и стали доступными принципиально новые КС. Заслуживают внимания «Эховист» и «Левовост». Они представляют собой суспензию микрочастиц галактозы, содержащих пузырьки воздуха. Эти препараты позволяют, в частности, диагностировать заболевания, которые сопровождаются гемодинамическими изменениями в правых отделах сердца.

В настоящее время благодаря широкому использованию рентгеноконтрастных, парамагнитных средств и, используемых при ультразвуковом исследвании, возможности диагностики заболеваний различных органов м систем значительно расширились. Продолжаются исследования по созданию новых КС высокоэффективных и безопасных.

ОСНОВЫ МЕДИЦИНСКОЙ РАДИОЛОГИИ

Сегодня мы являемся свидетелями все ускоряющегося прогресса медицинской радиологии. В клиническую практику властно внедряются каждый год все новые методы получения изображения внутренних органов, способы лучевой терапии.

Медицинская радиология - одна из важнейших медицинских дисциплин атомного веке.. Она родилась на стыке 19-20 вв., когда человек узнал, что кроме привычного видимого нами мира, существует мир чрезвычайно малых величин, фантастических скоростей и необычных превращений. Это относительно молодая наука, дата ее рождения точнс» обозначена благодаря открытиям немецкого ученого В. Рентгене; (8 ноября 1895 г.) и французского ученого А. Беккереля (март 1996 г.): открытия рентгеновских лучей и явлений искусственной радиоактивности. Сообщение Беккереля определило судьбу П. Кюри и М. Складовской-Кюри (ими был выделен радий, радон, полоний). Исключительной значение для радиологии имели работы Розенфорда. Путем бомбардировки атомов азота альфа-частицами им были получены изотопы атомов кислорода, т. е. было доказано превращение одного химического элемента в другой. Это был «алхимик» 20 века, «крокодил». Им были открыты протон, нейтрон, что дало возможность нашему соотечественнику Иваненко создать теорию строения атомного ядра. В 1930 году был построен циклотрон, что позволило И. Кюри и Ф. Жолио-Кюри (1934) впервые получить радиоактивный изотоп фосфора. С этого момента началось бурное развитие радиологии. Из отечественных ученых следует отметить исследования Тарханова, Лондона, Кинбека, Неменова, внесших весомый вклад в клиническую радиологию.

Медицинская радиология - область медицины, разрабатывающая теорию и практику применения излучения в медицинских целях. Она включает в себя две основные медицинские дисциплины: лучевую диагностику (диагностическую радиологию) и лучевую терапию (радиационною терапию).

Лучевая диагностика - наука о применении излучений для исследования строения и функций нормальных и патологически измененных органов и систем человека с целью профилактики и распознавания заболеваний.

В состав лучевой диагностики входят рентгенодиагностика, радионуклидная диагностика, ультразвуковая диагностика и магнитно-резонансная визуализация. К ней также относят термографию, СВЧ-термометрию, магнитно-резонансную спектрометрию. Очень важное направление в лучевой диагностике - интервенционная радиология: выполнение лечебных вмешательств под контролем лучевых исследований.

Без радиологии сегодня не могут обойтись никакие медицинские дисциплины. Лучевые методы широко используют в анатомии, физиологии, биохимии и др.

Группировка излучений, используемых в радиологии.

Все излучения, используемые в медицинской радиологии, делят на две большие группы: неионизирующие и ионизирующие. Первые, в отличии от вторых, при взаимодействии со средой не вызывают ионизации атомов, т. е. их распада на противоположно заряженные

частицы - ионы. Чтобы ответить на вопрос о природе и основных свойствах ионизирующих излучений, следует вспомнить строение атомов, т. к. ионизирующие излучение - внутриатомная (внутриядерная) энергия.

Атом состоит из ядра и электронных оболочек. Электронные оболочки - это определенный энергетический уровень, создаваемый вращающимися вокруг ядра электронами. Почти вся энергия атома заключается в его ядре - оно определяет свойства атома и его вес. Ядро состоит из нуклонов - протонов и нейтронов. Количество протонов в атоме равняется порядковому номеру химического элемента таблицы Менделеева. Сумма протонов и нейтронов обусловливает массовое число. Химические элементы, расположенные в начале таблицы Менделеева, в своем ядре имеют равное количество протонов и нейтронов. Такие ядра устойчивы. Элементы, расположенные в конце таблицы, имеют ядра, перегруженные нейтронами. Такие ядра становятся неустойчивыми и со временем распадаются. Это явление называется естественной радиоактивностью. Все химические элементы, расположенные в таблице Менделеева, начиная с № 84 (полоний), являются радиоактивными.

Под радиоактивностью понимают такое явление в природе, когда атом химического элемента распадается, превращаясь в атом другого элемента, с иными химическими свойствами и при этом в окружающую среду выделяется энергия в виде элементарных частиц и гамма-квантов.

Между нуклонами в ядре действуют колоссальные силы взаимного притяжения. Они характеризуются большой величиной и действуют на очень малом расстоянии, равному поперечнику ядра. Эти силы получили название ядерных сил, которые не подчиняются электростатическим законам. В тех случаях, когда в ядре имеется преобладание одних нуклонов над другими, ядерные силы становятся небольшими, ядро - неустойчивым, и со временем распадается.

Все элементарные частицы и гамма-кванты обладают зарядом, массой и энергией. За единицу массы принята масса протона, заряда - заряд электрона.

В свою очередь элементарные частицы делятся на заряженные

и

незаряженные

. Энергия элементарных частиц выражается в эв, Кэв, Мэв.

 

Чтобы получить из стабильного химического элемента радиоактивный, необходимо изменить протонно-нейтронное равновесие в ядре. Для получения искусственно радиоактивных нуклонов (изотопов) обычно используют три возможности:

1.Бомбардировка стабильных изотопов тяжелыми частицами в ускорителях (линейные ускорители, циклотроны, синхрофазотроны и проч.).

2.Использование ядерных реакторов. При этом радионуклиды образуются в качестве промежуточных продуктов распада U-235 (1-131, Cs-137, Sr-90 и др.).

3.Облучение стабильных элементов медленными нейтронами.

4. В последние время в клинических лабораториях для получения радионуклидов используют генераторы (для получения технеция - молибденовый, индия - заряженный оловом).

Известно несколько видов ядерных превращений. Наиболее распространенными являются следующие:

1. Реакция -распада

(полученное вещество смещается влево на дне

клеточки таблицы Менделеева).

 

2.

-электронный распад

(откуда же берется электрон, т. к. в ядре его

нет? Он возникает при переходе нейтрона в протон

3.

-позитронный распад

(при этом протон превращается в нейтрон

4.Цепная реакция - наблюдается при делении ядер ура-на-235 или плутония-239 при наличии так называемой критической массы. На этом принципе основано действие атомной бомбы.

5.Синтез легких ядер - термоядерная реакция. На этом принципе основано действие водородной бомбы. Для синтеза ядер нужна большая энергия, она берется при взрыве атомной бомбы.

Радиоактивные вещества, как естественные так и искусственные, с течением времени распадаются. Это можно проследить за эманацией радия, помещенного в запаенную стеклянную трубочку. Постепенно свечение трубочки уменьшается. Распад радиоактивных веществ подчиняется определенной закономерности. Закон радиоактивного распада гласит: «Количество распадающихся атомов радиоактивного вещества за единицу времени пропорционально количеству всех атомов», т. е. в единицу времени всегда распадается определенная часть атомов. Это так называемая постоянная распада (X). Она характеризует относительную скорость распада. Абсолютная скорость распада - это количество распадов в одну секунду. Абсолютная скорость распада характеризует активность радиоактивного вещества.

Единицей активности радионуклида в системе единиц СИ является беккерель (Бк): 1 Бк = 1 ядерному превращению за 1 с. На практике еще используют внесистемную единицу кюри (Ки): 1 Ки = 3,7 * 1010 ядерных превращений за 1 с (37 млрд. распадов). Это большая активность. В медицинской практике чаще используют милли и микро Ки.

Для характеристики скорости распада пользуются периодом, в течение которого активность уменьшается вдвое (T=1/2). Период полураспада определяется в с, мин, час, годах и тысячелетиях, Период полураспада, например, Тс-99т - 6 часов, а период полураспада Ra - 1590 лет, a U-235 - 5 млрд. лет. Период полураспада и постоянная

распада находятся в определенной математической зависимости: T = 0,693. Теоретически полного распада радиоактивного вещества не происходит, поэтому на практике пользуются десятью периодами полураспада, т. е. по истечении этого срока радиоактивное вещество практически полностью распалось. Самый большой период полураспада у Bi-209 -200 тыс. млрд. лет, самый короткий -

Для определения активности радиоактивного вещества используются радиометры: лабораторные, медицинские, радиографы, сканеры, гамма-камеры. Все они построены по одному и тому же принципу и состоят из детектора (воспринимающего излучения), электронного блока (ЭВМ) и регистрирующего устройства, позволяющего получать информацию в виде кривых, цифр или рисунка.

Детекторами служат ионизационные камеры, газоразрядные и сцинтилляционные счетчики, полупроводниковые кристаллы или химические системы.

Решающее значение для оценки возможного биологического действия излучения имеет характеристика его поглощения в тканях. Величина энергии, поглощенная в единице массы облучаемого вещества, называется дозой, а та же величина, отнесенная к единице времени, называется мощностью дозы излучения. Единицей поглощенной дозы в системе СИ является грей (Гр): 1 Гр = 1 Дж/кг. Поглощенную дозу определяют расчетным путем, используя таблицы, или посредством введения миниатюрных датчиков в облучаемые ткани и полости тела.

Различают экспозиционную дозу и поглощенную дозу. Поглощенная доза - это количество лучевой энергии, поглощенной в массе вещества. Экспозиционная доза - это доза, измеренная в воздухе. Единицей экспозиционной дозы является рентген (миллирентген, микрорентген). Рентген (г) - это количество лучистой энергии, поглощенной в 1 см3 воздуха при определенных условиях (при 0° С и нормальном атмосферном давлении), образующей электрический заряд равный 1 или образующей 2,08x109 пар ионов.

Методы дозиметрии:

1.Биологические (эритемная доза, эпилляционная доза и т. д.).

2.Химические (метилоранж, алмаз).

3.Фотохимические.

4.Физические (ионизационные, сцинтилляционные и др.).

По своему назначению дозиметры делятся на следующие виды:

1.Для измерения излучения в прямом пучке (конденсаторный дозиметр).

2.Дозиметры контроля и защиты (ДКЗ) - для измерения мощности доз на рабочем месте.

3.Дозиметры индивидуального контроля.

Все эти задачи удачно сочетает в себе термолюминесцентный дозиметр («Телда»). С его помощью можно измерять дозы в пределах от 10 млрд. до 105рад, т. е. он может использоваться как для контроля защиты, так и для измерения индивидуальных доз, а также доз при лучевой терапии. При этом детектор дозиметра может быть вмонтирован в браслет, кольцо, нагрудный жетон и т. д.

РАДИОНУКЛИДНЫЕ ИССЛЕДОВАНИЯ ПРИНЦИПЫ, МЕТОДЫ, ВОЗМОЖНОСТИ

С появлением искусственных радионуклидов перед врачом открылись заманчивые перспективы: вводя в организм больного радионуклиды, можно наблюдать за их местоположением с помощью радиометрических приборов. За сравнительно короткий срок радионуклидная диагностика превратилась в самостоятельную медицинскую дисциплину.

Радионуклидный метод - это способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченых ими соединений, которые называются РФП. Эти индикаторы вводятся в организм, а затем с помощью различных приборов (радиометров) определяют скорость и характер перемещения и выведения их из органов и тканей. Кроме того, для радиометрии могут быть использованы кусочки тканей, кровь, выделения больного. Метод обладает высокой чувствительностью и проводится in vitro (радиоимунный анализ).

Таким образом, целью радионуклидной диагностики является распознавание заболеваний различных органов и систем с использованием радионуклидов и меченых ими соединений. Сущность метода - регистрация и измерение излучений от введенных в

организм РФП или радиометрия биологических проб с помощью радиометрических приборов.

Радионуклиды отличаются от своих аналогов - стабильных изотопов - лишь физическими свойствами, т. е. способны распадаться, давая излучение. Химические свойства одинаковы, поэтому введение их в организм не влияет на течение физиологических процессов.

В настоящее время известно 106 химических элементов. Из них 81 - имеет как стабильные, так и радиоактивные изотопы. Для остальных 25 элементов известны только радиоактивные изотопы. Сегодня доказано существование около 1700 нуклидов. Число изотопов химических элементов колеблется от 3 (водород) до 29 (платина). Из них 271 нуклид стабилен, остальные - радиоактивны. Около 300 радионуклидов находят или могут найти практическое применение в различных сферах человеческой деятельности.

С помощью радионуклидов можно измерить радиоактивность тела и его частей, изучить динамику радиоактивности, распределение радиоизотопов, измерить радиоактивность биологических сред. Следовательно, можно изучать обменные процессы в организме, функции органов и систем, течение секреторных и экскреторных процессов, изучить топографию органа, определить скорость кровотока, обмен газов и др.

Радионуклиды широко используются не только в медицине, но и в самых различных областях знаний: археологии и палеонтологии, маталловедении, сельском хозяйстве, ветеринарии, судмед. практике, криминалистике и пр.

Широкое применение радионуклидных методов и их высокая информативность сделали радиоактивные исследования обязательным звеном клинического обследования больных, в частности головного мозга, почек, печени, щитовидной железы и других органов.

История развития. Еще в 1927 году были попытки использования радия для изучения скорости кровотока. Однако широкое изучение вопроса использования радионуклидов в широкой практике началось в 40-е годы, когда были получены искусственные радиоактивные изотопы (1934 г. - Ирен и Ф. Жолио Кюри, Франк, Верховская). Впервые был использован Р-32 для изучения обмена в костной ткани. Но до 1950 г. внедрение методов радионуклидной диагностики в клинику тормозилось техническими причинами:

не было в достаточном количестве радионуклидов, простых в обращении радиометрических приборов, эффективных методик исследования. После 1955 г. исследования: в области визуализации внутренних органов интенсивно продолжалось в плане расширения ассортимента органотропных РФП и технического перевооружения. Было организовано производство коллоидного раствора Au-198,1-131, Р-32. С 1961 г. началось производство бенгальского розового-1-131, гиппурана-1-131. К 1970 г. в основном сложились определенные традиции использования конкретных методик исследования (радиометрия, радиография, гамматопография, клиническая радиометрия in vitro. Началось бурное развитие двух новых методик: сцинтиграфии на камерах и радиоимуннологических исследований in vitro, которые сегодня составляют 80% всех радионуклидных исследований в клинике. В настоящее время гаммакамера может получить такое же широкое распространение, как и рентгенологическое исследование.

Сегодня намечена широкая программа внедрения в практику лечебных учреждений радионуклидных исследований, которая успешно реализуется. Открываются все новые лаборатории, внедряются новые РФП, методики. Так, буквально за последние годы созданы и внедрены в клиническую практику туморотропные (цитрат галлия, меченный блеомицин) и остеотропные РФП.

Принципы, методы, возможности

Принципы и сущность радионуклидной диагностики - способность радионуклидов и меченых ими соединений избирательно накапливаться в органах и тканях. Все радионуклиды и РФП можно условно разделить на 3 группы:

1. Органотропные: а) с направленной органотропностью (1-131 - щитовидная железа, бенгальский розовый-1-131 - печень и др.); б) с косвенной направленностью, т. е. временная концентрация в органе по пути выведения из организма (моча, слюна, кал и т.

д.);

2.Туморотропные: а) специфические туморотропные (цитрат галлия, меченый блеомицин); б) неспецифические туморотропные (1-131 при исследовании метастазов рака щитоввдной железы в кости, бенгальский розовый-1-131 при метастазах в печень и др.);

3.Определение опухолевых маркеров в сыворотке крови in vitro (альфафетопротеин при раке печени, раковоэмбриснальный антиген - опухоли ЖКТ, хориогонадотропин - хорионэпителиома и др.).

Преимущества радионукиидной диагностики:

1.Универсальность. Все органы и системы подвластны методу радионуклидной диагностики;

2.Комплексность исследований. Примером может служить исследование щитовидкой железы (определение внутритиреоидного этапа йодного цикла, транспортноорганического, тканевого, гамматопоргафия);

3.Низкая радиотокси чность (лучевая нагрузка не превышает дозы, получаемой пациентом при одном рентгеновском снимке, а при радиоимунном исследовании лучевая

нагрузка исключается полностью, что позволяет широко использовать метод в педиатрической практике;

4. Высокая степень точности исследований и возможность количественной регистрации полученных данных с использованием ЭВМ.

С точки зрения клинической значимости радионуклидные исследования условно подразделяются на 4 группы:

1.Полностью обеспечивающие постановку диагноза (заболевания щитовидной железы, поджелудочной железы, метастазы злокачественных опухолей);

2.Определить нарушение функции (почек, печени);

3.Установить топографо-анатомические особенности органа (почек, печени, щитовидной железы и т. д.);

4.Получить дополнительную информацию в комплексном исследовании (легких, сердечно-сосудистой, лимфатической систем).

Требования к РФП:

1.Безвредность (отсутствие радиотоксичности). Радиотоксичность должна быть ничтожной, что зависит от периода полураспада и полувыведения (физический и биологический период полувыведения). Совокупность периодов полураспада и полувыведения - эффективный период полувыведения. Период полураспада должен быть от нескольких минут до 30 суток. В связи с этим, радионуклиды делятся на: а) долгоживущие - десятки дней (Se-75 - 121 день, Hg-203 - 47 дней); б) среднеживущие - несколько дней (1- 131-8 дней, Ga-67 - 3,3 дня); в) короткоживущие - несколько часов (Тс-99т - 6 часов, In113m - 1,5 часа); г) ультракороткоживущие - несколько минут (С-11, N-13, О-15 - от 2 до

15минут). Последние используются при позитронно-эмиссионной томографии (ПЭТ).

2.Физиологическая обоснованность (избирательность накопления). Однако, сегодня, благодаря достижениям физики, химии, биологии и техники, стало возможным включать радионуклиды в состав различных химических соединений, биологические свойства которых резко отличаются от радионуклида. Так, технеций может использоваться в виде полифосфата, макро- и микроагрегатов альбумина и др.

3.Возможность регистрации излучений от радионуклида, т. е. энергия гамма-квантов и бетта-частиц должна быть достаточной (от 30 до 140 Кэв).

Методы радионуклидных исследований делятся на: а) исследование живого человека; б) исследование крови, секретов, экскретов и прочих биологических проб.

К методам in vivo относятся:

1.Радиометрия (всего тела или части его) - определение активности части тела или органа. Активность регистрируется в виде цифр. Примером может служить исследование щитовидной железы, ее активности.

2.Радиография (гаммахронография) - на радиографе или гаммакамере определяется динамика радиоактивности в виде кривых (гепаторадиография, радиоренография).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]