Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

geo_mon

.pdf
Скачиваний:
5
Добавлен:
09.08.2023
Размер:
8.77 Mб
Скачать

як, асбест, кадмий, хром, фториды, сероводород, свинец, марганец, ртуть, никель, платина, ванадий) и классические атмосферные загрязнители (диоксид азота, озон, взвешенные частицы РМ10 и РМ2,5, диоксид серы);

стойким органическим, обладающим высокой токсичностью и способностью накапливаться в окружающей среде и живых организмах. В соответствии с решениями Стокгольмской конвенции, которую подписали 110 государств (в том числе и Россия), в перчень включены: альдрин, эндрин, хлордан, мирекс, диэльдрин, ДДТ, гексахлорбензол, токсафены, гептахлор; полихлорированные бифенилы (ПХБ), дибензо-п-диоксины (ПХДД) и дибензофураны (ПХДФ), алкилпроизводные свинца, олова и ртути, ПАУ, хлорированные бензолы, хлорпарафины, фталаты;

парниковым газам и озоноразрушающим ЗВ.

Одновременно с наблюдениями за ЗВ на постах также определяются следующие метеорологические параметры: направление и скорость ветра, температура воздуха, атмосферное давление, влажность воздуха, состояние погоды и подстилающей поверхности.

Структура государственного экологического мониторинга. В

1993 году было принято решение о создании Единой государственной системы экологического мониторинга (ЕГСЭМ), которая должна объединить возможности и усилия многочисленных служб для решения задач комплексного наблюдения, оценки и прогноза состояния среды в Российской Федерации. Цель мониторинга – автоматизированный контроль окружающей природной среды в пространстве и времени в соответствии с заданной программой (рис.

112).

Главная задача — обеспечение органов государственного управления и природопользователей информацией об экологической обстановке в различных регионах страны, информационная поддержка процедур принятия решений в области природоохранной деятельности и экологической безопасности. Виды мониторинга: биоэкологический, геоэкологический, биосферный, геофизический, климатический, биологический.

В соответствии с нормативными правовыми документами общее руководство созданием и функционированием ЕГСЭМ и координация деятельности государственных органов исполнительной власти в области мониторинга окружающей природной среды возложены

241

на Министерство природных ресурсов РФ. Как центр единой науч- но-технической политики в области экологического мониторинга, ЕГСЭМ должна выполнять следующие функции.

Рис. 112. Структура функций ЕГСЭМ

Методы экологического мониторинга. Дистанционный мо-

ниторинг осуществляется на относительно больших расстояниях от объекта наблюдения с помощью специальной аппаратуры, которая может быть установлена на искусственных спутниках земли, самолётах, вертолётах, автомобилях, судах и других носителях

(рис. 113).

Рис. 113. Структура и средства мониторинга

242

Физической основой дистанционного метода служит естественное (Солнца, Земли) или искусственное (созданное человеком) электромагнитное излучение. Выделяют диапазоны рентгеновских излучений, ультрафиолетовых, видимых, инфракрасных и радиоволн. Электромагнитные волны, излучаемые самим объектом или отражаясь от его поверхности, несут различную информацию о нем, которая фиксируется на материалах съемки. Материалы съемок могут быть представлены фотографическими, телевизионными, сканерными, радиолокационными и другими изображениями.

Методы наземного слежения. В системе наземного слежения, кроме дистанционного зондирования, мониторинг осуществляется путем стационарных, полустационарных и маршрутных наблюдений. По методам получения информации широко используют-

ся геохимический, геофизический, индикационный методы.

При геофизическом методе наблюдения проводятся в стацио-

нарных и полустационарных условиях с применением точных измерительных приборов по специальной программе и методике.

Программа включает инструментальное определение элементов радиационного, теплового и водного балансов, исследование тепло- и влагообмена между компонентами природной среды, воднотеплового режима и его влияния на продуктивность экосистем. Анализ данных, сравнение структуры балансов ненарушенной и нарушенной (трансформированной) территорий позволяет оценить возможные негативные последствия хозяйственной деятельности человека.

Таким образом, сущность геофизического метода состоит в изучении протекающих в экосистемах процессов на основе использования балансового подхода.

При геохимическом методе в стационарных и полустацио-

нарных условиях изучается поступление элементов естественным путем и в результате хозяйственной деятельности человека. Выявляется интенсивность их миграции в водной и в воздушной среде. Сопоставляется состав растворенных веществ в экосистемах различной степени антропогенной трансформации.

В данном случае рассматривается круговорот элементов в биологической среде и изменения этого круговорота под влиянием техногенеза. При анализе рассматриваются все основные компоненты среды: воздух, атмосферные осадки, поверхностные и грунтовые воды, горные породы, почвы, растения и др.

243

Геохимический метод дает возможность определить закономерности изменения химического состава природных компонентов, природных комплексов и экосистем. А также определить их устойчивость к различным веществам (или загрязнителям) и способность к самоочищению, выявить скорости распространения и пространственные масштабы загрязнения.

Индикационный метод заключается в определении состояния одного объекта по состоянию другого, связанного с первым и более доступного для изучения. Ведущую роль играет в данном случае, биоиндикация, то есть выявление изменений природной среды с помощью живых организмов или сообществ, а главным индикатором выступает растительный покров. Растительный покров позволяет выявить изменения по четырем характеристикам: физиологическому, морфологическому, фитоценотическому и флористическому. Первые два дают информацию преимущественно об одномоментных состояниях среды, последние два - о многолетних интервалах антропогенного воздействия.

Одними из наиболее разработанных методов биоиндикации является (дендроиндикация) выявление изменений природной среды с помощью изучения хода прироста деревьев (особенно хвойных). Это один из немногих методов, позволяющих получить непрерывную информацию о развитии процессов за многолетний период. Ее анализ дает возможность установить сроки возникновения изменений природы и скорости их формирования во времени и пространстве. По величине колебания прироста можно судить о глубине трансформации природных систем, определить границы распространения и тенденцию развития изучаемого процесса.

Другой метод биоиндикации – лихеноиндикация, то есть выявление изменений природной среды с помощью изучения эпифитных лишайников. Интенсивность загрязнения среды определяется с помощью шкалы, составленной по степени чувствительности лихенофлоры к загрязнению.

Основной недостаток биоиндикации – это необходимость учета действия многих факторов, что в ряде случаев затрудняет его применение. Поэтому в настоящее время формируется новое направление мониторинговых наблюдений - это ландшафтная индикация, то есть выявление состояния природной среды (прежде всего загрязнения) по изменению составных частей и структуры ландшафта. В качестве главного индикатора выступает нарушение горизонталь-

244

ной и вертикальной структур природных комплексов (например, выпадение отдельного элемента). С позиции ландшафтного подхода необходимо сопряженное изучение нескольких индикаторов, а также выявление структуры геосистем.

Формирование новой структуры часто свидетельствует о сильном антропогенном изменении природной среды. Например, в зоне воздействия крупных ТЭС могут быть выделены зоны сплошных нарушений растительности и локально-очаговых нарушений геосистем. В данном случае, информативность индикационного метода возрастает при использовании био-, и геоинформационного подхода.

Моделирование как метод получения мониторинговой ин-

формации. Пока антропогенное влияние на природную среду носило в основном локальный характер его оценка и прогноз могли быть получены с использованием методов импактного мониторинга. Однако по мере распространения антропогенного влияния на региональный и глобальный уровень, локальных (фрагментарных) наблюдений оказалось недостаточно, поскольку выявить эффект техногенеза более крупного масштаба по этим данным не представляется возможным. В то же время экспериментировать с биосферой, меняя тем или иным образом условия ее функционирования, на региональном и тем более на глобальном уровне человек не может, так как это слишком большой риск. В этой ситуации наиболее перспективным путем решения проблемы прогнозирования и поиска путей преодоления опасных тенденций развития биосферы является математическое моделирование процессов, протекающих в биосфере (рис. 114).

Существует множество математических моделей для описания процессов протекающих в биосфере. В экологии наиболее часто используются следующие группы моделей: дескриптивные, оптимизационные, имитационные.

Дескриптивные модели предназначены для описания различных процессов. Например, такие модели позволяют определить численность популяции животных через определенное время, или дают возможность предсказать, как при том или ином мероприятии будет меняться ход эпидемии, то есть, как будет меняться число заболевших и т.д.

В случае, когда необходимо принятие решений по управлению процессом, дескриптивных моделей оказывается недостаточно. То-

245

гда используются оптимизационные модели, поскольку они позволяют не только описывать происходящие процессы, а также управлять процессом. Часто оптимизационное моделирование применяется при разработке эколого-экономических моделей, поскольку они позволяют выбрать оптимальную политику хозяйствования. Например, размещение предприятий при отраслевом или территориальном планировании с учетом их сырьевых возможностей, укрупнении предприятий, управлении запасами, рациональном природопользовании и др.

Рис. 114. Специализированный WEB-интерфейс

Имитационные модели предназначаются для «проигрывания» возможных вариантов поведения (смены состояний) природных систем под влиянием изменения внешних факторов. Они позволяют логически увязать эмпирические знания о различных процессах, протекающих в природных системах, и на основе эксперимента по-

246

лучить непротиворечивые количественные данные об их изменениях во времени и пространстве. Имитационные модели используются: а) как средство изучения систем, выявления и анализа закономерностей их функционирования; б) для получения количественной оценки происшедших изменений природных объектов; в) как средство прогнозирования поведения систем под влиянием предполагаемых внешних факторов.

Картографический мониторинг. Человек издавна применяет картографические изображения для решения своих народно-

хозяйственных задач. С научной точки зрения картографический

метод исследования предусматривает следующие виды анализа:

визуальный анализ – в процессе которого исследователь получает общее представление об объектах или явлениях, закономерностях их размещения, о пространственных взаимосвязях с другими объектами или явлениями, об их особенностях и динамике;

картометрический анализ заключается в измерении и исчислении по картам количественных характеристик явлений (длина, ширина, площадь, расстояния, объем, координаты, положение в рельефе и т.д.);

графический анализ заключается в исследовании явлений при помощи графических построений, выполненных по картам. Такими построениями могут быть профили, разрезы, блок-диаграммы, розы направлений и др.;

при математико-статистическом анализе рассматривают-

ся однородные множества случайных величин, изменяющихся в пространстве. Их значения определяются по картам и составляют статистические совокупности. Они могут быть представлены различными параметрами окружающей среды. Например, температурой, концентрацией газов, площадью распространения и др. По ним

впроцессе обработки вычисляются средняя арифметическая, мода, медиана, коэффициент корреляции и др.;

математическое моделирование по данным взятым с карт предусматривает создание пространственных моделей явлений или процессов с помощью различных компьютерных программ и составление геоизображений в электронном виде. Известно, что большинство явлений и процессов в природе связаны между собой функциональными зависимостями и могут рассматриваться как функции пространства и времени, что позволяет при моделирова-

247

нии «проигрывать» различные экологические ситуации и составлять прогнозы.

В настоящее время картографический метод исследования широко применяется в системе мониторинга и занимает важное место, поскольку эффективность использования данных, полученных в результате наблюдений, существенно возрастает, если они представлены в виде карт. С помощью карт можно осуществлять контроль, оценивать и прогнозировать состояние природной среды. Реализа-

ция картографического мониторинга состоит из следующих

этапов:

а) создание фонда картографической информации, содержащего различные карты, составленные на основе имеющихся к началу организации наблюдений материалов;

б) сбор, обработка и систематизация данных аэрокосмических и наземных наблюдений с целью их картографирования;

в) перевод обработанных данных в картографическую форму, то есть построение динамических карт наблюдаемых явлений, условий их распространения и происходящих при этом изменений;

г) анализ построенных карт с целью выявления закономерностей распространения наблюдаемых явлений, оценки и прогноза состояния природной среды.

Особую ценность представляют оперативные карты опас-

ных явлений, составленные в крупном масштабе (1 : 100 000 – 1 : 1000 000). Они создаются по отпечаткам аэрокосмических снимков и отражают внешние условия, а также закономерности распространения и развития наблюдаемых процессов. Так, картографическое обеспечение мониторинга лесных пожаров предусматривает создание карт, на которых указываются очаги скрытых и явных пожаров, отмечается направление и скорость ветра, районы развития гроз, участки формирования торфяно-болотных ландшафтов, показатели влажности надпочвенного и почвенного покровов и т.п. Другими словами, на этих картах показывают факторы пожарной опасности, выявляют пожароопасные территории, определяют возможные ареалы и вероятную интенсивность возгорания лесных насаждений

(рис. 115).

Оперативные мониторинговые карты являются основой для оповещения заинтересованных организаций, для планирования и проведения природоохранных мероприятий. Эти карты вместе с результатами анализа должны не только вовремя направляться потре-

248

бителям, но и одновременно пополнять (на основе обратной связи) фонд базовой картографической информации.

Рис. 115. Природно-техногенный комплекс оперативного мониторинга

В ряде конкретных случаев картографический мониторинг может принимать более простые формы. Например, для выявления источников загрязнения атмосферы городов достаточно иметь геохимические карты, составленные по результатам изучения снегового покрова. Сравнение подобных карт с данными почвенногеохимических исследований позволяет определить происхождение геохимических аномалий и на этой основе выявить наиболее опасные источники загрязнения (рис. 116).

Аэрокосмический мониторинг. Аэрокосмический мониторинг относится к дистанционному мониторингу. Физической основой дистанционного метода служит естественное (Солнца, Земли) или искусственное (созданное человеком) электромагнитное излучение. Выделяют диапазоны рентгеновских излучений, ультрафиолетовых, видимых, инфракрасных и радиоволн (рис. 117). Электромагнитные волны, излучаемые самим объектом или отражаясь от его поверхности, несут различную информацию о нем, которая фиксируется на материалах съемки. Материалы съемок могут быть пред-

ставлены фотографическими, телевизионными, сканерными, ра-

диолокационными и другими изображениями.

249

Рис. 116. Схема анализа и оценки оперативного мониторинга техногенных рисков

Рис. 117. Диапазоны длин электромагнитных волн (мкм)

250

Соседние файлы в предмете Экология