Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы к экзамену.docx
Скачиваний:
3
Добавлен:
11.05.2023
Размер:
487.4 Кб
Скачать

Качество и сертификация нефтепродуктов

Вопросы к экзамену

Классификация нефтей и номенклатура нефтепродуктов

1.Состав нефти. Основные физико-химические и товарные свойства нефтей.

 Нефть – горючая, маслянистая жидкость, преимущественно темного цвета, представляет собой смесь различных углеводородов. В нефти встречаются следующие группы углеводородов: метановые (парафиновые) с общей формулой СnН2n+2; нафтеновые – СnН2n; ароматические – СnH2n-6. Преобладают углеводороды метанового ряда (метан СН4, этан С2Н6, пропан С3Н8 и бутан С4Н10), находящиеся при атмосферном давлении и нормальной температуре в газообразном состоянии. Пентан С5Н12, гексан С6Н14 и гептан С7Н16 неустойчивы, легко переходят из газообразного состояния в жидкое и обратно. Углеводороды от С8Н18 до С17Н36 – жидкие вещества. Углеводороды, содержащие больше 17 атомов углерода – твердые вещества (парафины). В нефти содержится 82¸87 % углерода, 11¸14 % водорода (по весу), кислород, азот, углекислый газ, сера. В небольших количествах содержится хлор, йод, фосфор, мышьяк и т.п.

Основной показатель товарного качества нефти – ее плотность (r) (отношение массы к объему), по ней судят о ее качестве. Легкие нефти наиболее ценные. Физико-химические свойства нефти и ее товарные качества определяются составом. Состав нефти классифицируют на элементарный и фракционный.

Под элементарным составом нефти понимают массовое содержание в ней химических элементов. Основными элементами являются углерод и водород. Содержание углерода 83-87 %, водорода 12-14%. Значительно меньше других элементов – серы, кислорода, азота, их содержание редко превышает 3-4 %.

В зависимости от фракционного состава различают бензиновые (легкие) и топливные (тяжелые) нефти. Нефти месторождений Западной Сибири по фракционным составам в основном относятся к бензиновой нефти.

Свойства нефти изменяются в процессе ее добычи – при движении по пласту, в скважине, системах сбора и подготовки, при контакте с другими жидкостями и газами.

Плотность нефти - физическая величина, измеряемая отношением массы нефти к единице объема. Единица измерения - кг/м3.

Пользуются понятием относительной плотности нефти численно равной отношению плотности нефти к плотности дистиллированной воды при t = +4 оС.

Плотность нефти в пластовых условиях значительно отличается от плотности этой же нефти на поверхности за счет изменения объема.

Например: плотность нефти Муравленковского месторождения в пластовых условиях 781 кг/м3, а в поверхностных условиях - 853 кг/м3; плотность нефти Меретояхинского месторождения соответственно, 597 кг/м3 и 833 кг/м3.

Усадка нефти характеризует разницу между объемом пластовой и дегазированной нефти, отнесенную к объему нефти в пластовых условиях.

Вязкость- свойство жидкости оказывать сопротивление перемещению ее частиц при движении. Различают динамическую, кинематическую и условную вязкость нефти.

Единица измерения соответственно, Па∙см2.

Поверхностное натяжение представляет собой силы реакции, противодействующие изменению формы поверхности под давлением поверхностного слоя, возникающего вследствие отсутствия на поверхности среды взаимного уравновешения молекулярного притяжения. Данный параметр необходим для выбора применения физико-химических методов повышения нефтеотдачи.

Коэффициент сжимаемости нефти – показатель изменения единицы объема пластовой нефти при изменении давления на 0,1 Мпа. Он характеризует упругость нефти.

Теплоемкость нефтей – является особенно важной характеристикой для тех из них, которые можно транспортировать по трубопроводам только с предварительным подогревом. Повышение температуры снижает вязкость нефти и позволяет сделать ее пригодной для перекачки. Количество энергии, которое необходимо затратить для нагревания нефти, зависит от ее теплоемкости. Для большинства нефтей теплоемкость лежит в пределах 1500-2500 Дж/ (кг-К).

Температура застывания – имеет значение при осуществлении технологических операций с нефтью, например, при определении времени безопасной остановки перекачки для проведения ремонтных работ. Так как нефти являются смесью различных углеводородов, то у них переход из жидкого состояния в твердое происходит постепенно в некотором интервале температур. Чем ближе фактическая температура нефти к ее температуре застывания, тем больше энергозатрат требуется на ее перемещение. На температуру застывания сильное влияние оказывают содержащиеся в нефти парафины, асфальтосмолистых веществ, а также предварительная термообработка. В соответствии с ГОСТ 20287-74 температурой застывания считается температура, при которой охлаждаемая в пробирке нефть не изменяет уровня при наклоне пробирки на 450 в течение 1 мин.

2.Типы классификаций нефтей. Основы классификаций.

Нефти различных месторождений и даже одного месторождения, но разных горизонтов, отличаются элементным и углеводородным составом, что определяет и различие в их физических и химических свойствах. Свойства нефтей обуславливают методы их добычи и эксплуатации месторождений, способы их переработки, вид и качество получаемых из них продуктов. Абсолютно одинаковые нефти не существуют, но имеются такие её виды, которые близки по своей химической природе и свойствам. Это позволило создать классификацию нефтей.

Приняты химическая и технологическая классификация нефтей.

Химическая классификация

В основу этой классификации положено преимущественное содержание в нефти углеводородов одного или нескольких классов. Класс нефти по групповому химическому составу определяется на во всей пробе нефти, а во фракции, выкипающей до 300 0С. В зависимости от преобладания в этой фракции углеводородов одного класса (выше 50%), нефти делятся на три основных типа: 1) метановые (М); 2) нафтеновые (Н); 3) ароматические (А).

Если во фракции, выкипающей до 300 0С, содержится более 25% углеводородов других классов, то такие нефти относят к нефтям смешанного типа: 1) метано-нафтеновые (МН); 2) нафтено-метановые (НМ); 3) ароматическо-нафтеновые (АН); 4) нафтено-ароматические (НА); 5) метаново-

ароматические (МА); 6) ароматическо-метановые (АМ). Имеются нефти, когда все три основные класса углеводородов содержатся в них примерно в одинаковых количествах, это метано-нафтено-ароматические нефти. Нефти первых трёх типов встречаются редко. Из них чаще других встречаются нафтеновые нефти, чаще ароматические. Большинство нефтей относится к смешанным типам. Нефти типов МА и АМ в природе не обнаружены.

Технологическая классификация

Согласно технологической классификации, принятой в нашей стране, нефти подразделяются на классы - по содержанию серы; типы - в зависимости от потенциального содержания топлив (фракций, выкипающих до 350 0С); группы - по потенциальному содержанию базовых масел; подгруппы - по качеству масел, определяемых индексом вязкости; виды - по содержанию парафина*.

Техническая классификация нефтей.

Для определения единого подхода техническим требованиям нефти производимой нефтеперерабатывающими организациями при подготовке к транспортировке по магистральным нефтепроводам, наливным транспортом для поставки потребителя, на экспорт применяется ГОСТ Р51858-2002 («нефть» общие технологические условия). В соответствии с этим гостом нефть подразделяют:

- по физико-химическим свойствам

- по степени подготовки

- по содержанию сероводорода, меркаптанов

и на основании этих свойств находят шифр этой нефти.

3.Технологическая классификация нефтей.

Согласно технологической классификации, принятой в нашей стране, нефти подразделяются на:

  • - классы - по содержанию серы;

  • - типы - в зависимости от потенциального содержания топлив (фракций, выкипающих до 350 0С);

  • - группы - по потенциальному содержанию базовых масел;

  • - подгруппы - по качеству масел, определяемых индексом вязкости;

  • - виды - по содержанию парафина.

По количеству серы нефти подразделяются на три класса:

  • 1 класс - малосернистые (содержат не более 0,5% масс. серы);

  • 2 класс - сернистые (содержат от 0,51 до 2% масс. серы);

  • 3 класс - высокосернистые (выше 2% серы).

По выходу светлых фракций, перегоняющихся до 350 0С, нефти делятся на три типа:

  • Т1 - не менее 45%;

  • Т2 -30-44,9%;

  • Т3 - менее 30%.

По содержанию базовых масел нефти делятся на четыре группы:

  • М1 -не менее 25% в расчёте на нефть;

  • М2 - 15-25% в расчёте на нефть и не менее 45% в расчёте на мазут;

  • М3 - 15-25% в расчёте на нефть и 30-45% в расчёте на мазут;

  • М4 - менее 15% в расчёте на нефть.

По качеству базовых масел, оцениваемому индексом вязкости, различают две подгруппы (И1, И2).

По содержанию парафина:

  • П1 - малопарафиновая, не более 1,5% парафина;

  • П2- парафиновая, при содержании парафина от 1,5 до 6%;

  • П2 - высокопарафиновая выше 6% .

На основе технологической классификации каждая нефть имеет свой шифр.

К числу технологических можно отнести классификации, предложенные для более узко направленных характеристик нефтей. Например, классификация нефтей для выбора варианта их подготовки к транспорту.

4. Классификации нефтей по физическим свойствам и химическому составу.

Классификация их производится по каждому признаку (свойству) отдельно и на количественной основе. По этим признакам выделяются марки нефтей.

1. По химическому составу различаются три класса нефтей:

    1. Метановые, нафтен-метановые

    2. Нафтеновые,метан-нафтеновые

    3. Нафтен-ароматические.

К первой группе относятся нефти, добываемые в Волго-Уральской провинции, в Западной Сибири, Чечено-Ингушетии, Дагестане, Западной Украине и др.

2. По содержанию серы различаются нефти трех типов:

I. малосернистые (S<0,5%)

II. сернистые (S - 0,5 – 2%)

III. высокосернистые (S>2,0%)

3. По содержанию легких фракций (выкипающих при температуре до 350 С) выделяются три типа нефтей

Т1>45%

Т2- 30 – 45%

Т3<30%

4. По содержанию базовых масел выделяются четыре класса нефтей:

М1>25%

М2- 20 – 25%

М3- 15 – 20%

М4<15%

5. По содержанию парафина различаются нефти трех типов:

П1 – малопарафиновые (<1,5%)

П2 –парафиновые (1,5 – 6%)

П3 – высокопарафиновые (>6%)

6. По степени вязкости выделяются три типа нефтей:

И1– 1–5мПас

И2- 5-25мПас

И3>25мПас

7. По удельному весу различаются нефти пяти классов:

  1. очень легкие – 700 – 750 кг/м3

  2. легкие – 750 – 830 кг/м3

  3. нормальные – 830 – 860 кг/м3

  4. тяжелые – 860 – 900 кг/м3

  5. очень тяжелые – 900 – 1000 кг/м3

По этим признакам составляется шифр нефти. Например IТ2М3И1П3 – нефть малосернистая, со средним содержанием легких фракций, малосмолистая, маловязкая, высокопарафинистая.

Моторные топлива

1.Типы классификаций моторных топлив.

Моторное топливо – это нефтепродукты, используемые в качестве источника энергии для двигателей внутреннего сгорания. На него приходится более 65% продуктов нефтепереработки. Моторное топливо состоит из различных компонентов, включая базовую часть и специальные присадки (антидетонационные, противокоррозийные и пр.).

Классификация моторного топлива проводится по ряду критериев, связанных с применением топлив, способом получения и качественными характеристиками.

  1. По способу получения моторное топливо бывает:

• Дистиллятное.

• Остаточное.

К дистиллятам относят все разновидности бензинов, керосин, газойль и светлые виды ДТ. Эти нефтепродукты получают путем дистилляции – испарения легких фракций нефти и конденсирования ее паров.

К остаточному топливу относятся солярка и мазут. Их получают перегонкой тяжелых нефтяных фракций при очень высоких температурах.

  1. По принципу действия двигателя выделяют следующие виды моторного топлива:

• Карбюраторное.

• Дизельное.

• Реактивное.

Каждый вид топлива имеет свои показатели качества, регламентированные ГОСТом.

2.1. Карбюраторное топливо. Это бензины – автомобильный и авиационный. Они применяются в карбюраторных двигателях внутреннего сгорания (ДВС), где воспламенение топлива происходит от искры. Фракционный состав бензинов обусловлен их испаряемостью на всех этапах работы мотора: запуск, прогрев, смена режимов. Бензин не имеет четкой температуры выкипания, испаряется при 32 — 200⁰С. Так как пары бензина, соединяясь с воздухом, образуют взрывчатые смеси, основной характеристикой карбюраторного топлива становится детонационная стойкость – способность топлива противостоять самовоспламенению при повышении давления.

2.2. Дизельное топливо. ДТ используется в качестве источника энергии для дизельных двигателей на наземном транспорте, морских и речных судах. Плотность дизельного топлива 0,80 – 0,89 г/см3. Дизтопливо не зажигается принудительно, а самовоспламеняется под действием давления и высокой температуры воздуха. Повышенная зольность влияет на образование нагара в двигателе, поэтому ее содержание в ДТ ограничено 0,01%.

По области применения различают следующее ДТ:

1) Судовое маловязкое топливо (СМТ).

2) ДТ для тяжелого наземного транспорта (тепловозы, строительная, военная и с/х техника).

3) ДТ для легковых автомобилей.

СМТ используется в двигателях морских и речных судов. Его производство проще и экономически выгоднее, чем производство ДТ, поэтому и цена ниже.

По содержанию серы дизельное топливо делится на:

1) топливо моторное малосернистое (марки ТММЛ),

2) сернистое топливо.

ТММЛ (расшифровка: топливо моторное с малым количеством серы) – это зимняя разновидность СМТ, которая показывает лучшие эксплуатационные качества при низких температурах.

ТММЛ намного популярнее своего сернистого собрата из-за постоянного ужесточения требований экологии. Сернистые выхлопы наносят непоправимый ущерб окружающей среде, поэтому международные стандарты постоянно ужесточают нормы сернистости топлив.

2.3. Реактивное топливо. Реактивное топливо используется в двигателях реактивных самолетов и ракет. Его доля в количестве производимых нефтепродуктов примерно 5%. Это однокомпонентные топлива, которые полностью сгорают без дыма и нагара. Требования к реактивному топливу продиктованы жесткими параметрами работы двигателя: в них не допускается содержание воды, сероводорода, кислот, щелочей и твердых частиц.

2.Ассортимент авиационных бензинов. Система обозначения.

В России вырабатывают следующие марки авиабензинов: Б-91/115, Б-95/130, Б-100/130, Б-100/130 малоэтилированный и Б-92. Марка авиабензина означает его октановое число по моторному методу, указываемое в числителе, и сортность на богатой смеси - в знаменателе дроби. Чем больше суммарное содержание в бензине ароматических углеводородов, тем выше его сортность на богатой смеси. В течение 1988-1992 гг. разработан единый бензин Б-92 без нормирования показателя «сортности на богатой смеси». Кроме описанных выше марок авиационных бензинов, которые применяются непосредственно для эксплуатации поршневых двигателей, вырабатывается неэтилированный бензин марки Б-70. В настоящее время этот бензин используется, в основном, как бензин-растворитель. Авиационный бензин Б-70 готовят на основе бензина прямой перегонки или рафинатов риформинга с добавлением высокооктановых компонентов.

В России выпускают авиационные бензины следующих марок: Б-70, Б-100/130, Б-95/130, Б-91/115. Маркировка состоит из буквы Б (означает бензин авиационный) и цифры, указывающей октановое число бензинов или дроби, в числителе которой указывается октановое число, а в знаменателе – сортность бензина на богатой (рабочей) смеси. Рабочая смесь – смесь, образующаяся в цилиндрах двигателя, содержащая воздух необходимый для горения топлива.

3.Ассортимент автомобильных бензинов. Система обозначения.

В зависимости от октанового числа автобензины подразделяют на следующие марки:А-72, А-76, А-80 АИ-91, АИ-93 АИ-92, АИ-95, АИ-96, АИ-98 (производятся они по разным ГОСТам и ТУ). Для первых трех марок цифры указывают октановые числа, определяемые по моторному методу, для последних - по исследовательскому (о чем свидетельствует буква "И" в маркировке бензина). Бензин А-72 практически не вырабатывается ввиду отсутствия техники, эксплуатируемой на нем. Наибольшая потребность существует в бензине АИ -92, хотя доля бензина А-76 в общем объеме производства остается очень высокой. Бензины А-80 и АИ-96 предназначены в основном для поставки на экспорт. Технические условия на бензины марок А-76, А-80, АИ-91, АИ-92 и АИ-96 допускают вырабатывать их с использованием этиловой жидкости. При производстве бензинов АИ-95 и АИ-98 использование алкилсвинцовых антидетонаторов не допускается.

В целях повышения конкурентоспособности российских бензинов и доведения их качества до уровня европейских стандартов с 1997 г. вырабатывается четыре марки неэтилированных бензинов: «Нормаль-80», «Регуляр-91», «Премиум-95», «Супер-98» (максимальное содержание свинца не более 0,01 г/дм3). Бензин «Нормаль-80» предназначен для использования на грузовых автомобилях наряду с бензином А-76. Неэтилированный бензин «Регуляр-91» предназначен для эксплуатации автомобилей взамен этилированного А-93. Автомобильные бензины «Премиум-95» и «Супер-98» полностью отвечают европейским требованиям, конкурентоспособны на нефтяном рынке и предназначены в основном для зарубежных автомобилей, ввозимых в Россию.

С целью обеспечения Москвы и других регионов с высокой плотностью автомобильного транспорта экологически чистыми топливами разработан ряд технических условий на бензины автомобильные неэтилированные с улучшенными экологическими показателями: «Городские», «ЯрМарка» и др. В технических условиях выпуска данных бензинов установлены более жесткие нормы по содержанию бензола, предусмотрено нормирование ароматических углеводородов и добавление моющих присадок.

Обозначение марки автомобильного бензина и дизельного топлива

1. Обозначение автомобильного бензина включает следующие группы знаков, расположенных в определенной последовательности через дефис.

1.1. Первая группа: буквы АИ, обозначающие автомобильный бензин.

1.2. Вторая группа: цифровое обозначение октанового числа автомобильного бензина (80, 92, 93, 95, 96, 98 и др.), определенного исследовательским методом.

1.3. Третья группа: символы К2, К3, К4, К5, обозначающие экологический класс автомобильного бензина.

2. Обозначение дизельного топлива включает следующие группы знаков, расположенных в определенной последовательности через дефис.

2.1. Первая группа: буквы ДТ, обозначающие дизельное топливо.

2.2. Вторая группа: буквы Л (летнее), 3 (зимнее), А (арктическое), Е (межсезонное), обозначающие климатические условия применения.

2.3. Третья группа: символы К2, К3, К4, К5, обозначающие экологический класс дизельного топлива.

3. Обозначение марки может включать торговую марку (товарный знак) изготовителя.

4.Основные свойства авиационных бензинов. Краткие характеристики.

Удельная теплота сгорания – количество теплоты, выделяемое при полном сгорании единицы массы (кДж/кг). Чем выше теплота сгорания, тем меньше удельный расход бензина и больше дальность полета самолета при одном и том же объеме топливных баков.

Теплоту сгорания определяют не только теоретически, но и опытным путем, сжигая определенное количество топлива в специальных приборах, называемых калориметрами. Теплоту сгорания оценивают по повышению температуры воды в колориметре. Результаты, полученные этим методом, близки к значениям, рассчитанным по элементарному составу топлива.

Фракционный состав обусловливает испаряемость бензинов на различных режимах работы двигателя: пуск, разогрев, при смене режима работы, под нагрузкой.

Кислотность – количество мг КОН, необходимых для нейтрализации кислот, содержащихся в 100мг топлива.

Давление насыщенных паров : Давление насыщенных паров определяет летучесть нефти нефтепродуктов, оказывающую влияние на условия их хранения, транспортировки и применения. Зависит от соотношения объемов пространств, в которых находится пар и жидкость. Давление насыщенных паров характеризует интенсивность испарения, пусковые качества моторных топлив и склонность их к образованию паровых пробок.

Превышение этого параметра приводит к увеличению вероятности образования паровых пробок при высоких температурах, понижение затрудняет пуск двигателя зимой. Кроме того, характеризует физическую стабильность бензина.

Температура начала кристаллизации – некоторая температура, при которой начинают выделяться кристаллы растворителя. Именно температура начала кристаллизации является количественной характеристикой процесса кристаллизации из растворов; определением температуры помутнения, появления первых кристаллов, исчезновения кристаллов углеводородов

Массовая доля ароматических углеводородов :

Ароматические углеводороды обладают высокой термической стойкостью к реакциям разложения. Для этих углеводородов характерны более высокие значения вязкости, плотности, температуры кипения. По этим причинам их присутствие повышает противодетонационные свойства карбюраторного топлива.

Массовая концентрация фактических смол :превышение нормы этого параметра уменьшает пропускную способность жиклеров и, естественно, вызывает обеднение рабочей смеси карбюраторных двигателей, ускоряет засорение или закоксовывание распылителей и форсунок системы впрыска.

Массовая доля серы :

Сера (S) – при ее сгорании выделяется определенное количество теплоты. Но сам продукт сгорания является весьма нежелательной частью топлива, ибо сернистый SO2 и серный SO3 ангидриды вызывают сильную газовую или жидкостную коррозию металлических поверхностей. Содержание серы не более 0,05%.

Испытание на медной пластинке : показывает коррозионную активность самого бензина.

Выдержка медной пластинки в испытуемом топливе при повышенной температуре и фиксация изменения ее цвета, характеризующего коррозионное воздействие топлива.

Содержание водорастворимых кислот и щелочей :показывает степень коррозии деталей системы питания и двигателя.

Эти соединения вредно отражаются на долговечности двигателей, приводят к повышенной коррозии и износу, нагарообразованию. Соединения серы образуют при сгорании SO2 и SO3 , что повышает точку росы водяного пара, усиливая этим процесс образования H2 SO4 . Не допускается наличие минеральных (водорастворимых) кислот и щелочей, которые могут остаться в топливе в результате недостаточной промывки и отстоя топлива после его очистки.

Содержание механических примесей и воды :

Механические примеси вызывают быстрый износ деталей топливного насоса и форсунок.

Вода при плюсовых температурах образует с топливам эмульсию, разрушающую фильтры, а при отрицательных, превращаясь в лед, нарушает подачу топлива.

Для удаления воды и механических примесей необходимо в течение 48ч отстаивать топливо в резервуарах, тщательно фильтровать его при заправке и периодически сливать отстой из топливных баков.

Плотность характеризует отстаивание воды и осаждения механических примесей. Чем она ниже, тем быстрее будет отстаиваться вода.

Период стабильности – способность сохранять свой состав и основные свойства при хранении, транспортировке и в условиях потребления. Различают химическую и физическую стабильность. Под химической стабильностью понимают способность сохранять химический состав топлива, а под физической – способность сохранять однородность и фракционный состав.

Цвет: Если нормируется, служит первичным признаком определения качества. Этилированные бензины должны быть окрашены в оранжево-красный цвет. Остальные либо бесцветные, либо бледно-желтые, для некоторых цвет не определен.

Все марки авиационных бензинов этилированны и сильно ядовиты, так как содержат тетраэтилсвинца в горазда большем количестве, чем автомобильные. В состав и ТЭС и ТМС входят красители, поэтому все этилированные бензины имеют окраску в отличие от неэтилированных.

5.Основные свойства автомобильных бензинов. Краткие характеристики.

  Бензины – топлива, выкипающие в интервале температур 28–2150С и предназначенные для применения в двигателях внутреннего сгорания с принудительным воспламенением. В зависимости от назначения бензины разделяются на автомобильные и авиационные.

Основными показателями бензина являются детонационная стойкость, давление насыщенных паров, фракционный состав, химическая стабильность и др. Ужесточение в последние годы экологических требований к качеству нефтяных топлив ограничило содержание в бензинах ароматических углеводородов и сернистых соединений.

Детонационная стойкость

Детонация возникает в том случае, если скорость распространения пламени в двигателе достигает 1500-2500 м/с, вместо обычных 20 – 30 м/с. В результате резкого перепада давления возникает детонационная волна, которая нарушает режим работы двигателя, что приводит к перерасходу топлива, уменьшению мощности, перегреву двигателя, к прогару поршней и выхлопных клапанов.

Октановое число (ОЧ)

ОЧ – условный показатель, характеризующий стойкость бензинов к детонации и численно соответствующий детонационной стойкости модельной смеси изооктана и н-гептана.

ОЧ изооктана принято за 100 пунктов, а н-гептана – за 0. Для автомобильных бензинов (кроме А–76) ОЧ измеряется двумя методами: моторным и исследовательским. Октановое число определяется на специальных установках путём сравнения характеристик горения испытуемого топлива и эталонных смесей изооктана с н-гептаном. Испытания проводят в двух режимах:  жёстком (частота вращения коленчатого вала 900 об/мин, температура всасываемой смеси 149 0С, переменный угол опережения зажигания) и мягком (600 об/мин, температура всасываемого воздуха 52 0С, угол опережения зажигания 13 град.). Получают соответственно моторное (ОЧМ) и исследовательское ОЧ (ОЧИ). Разности между ОЧМ и ОЧИ называется чувствительностью и характеризует степень пригодности бензина к разным условиям работы двигателя. Среднее арифметическое между ОЧМ и ОЧИ называют октановым индексом и приравнивают к дорожному октановому числу, которое нормируется стандартами некоторых стран (например, США) и указывается на бензоколонках как характеристика продаваемого топлива.

При производстве бензинов смешением фракций различных процессов важное значение имеют так называемые ОЧ смешения (ОЧС), которые отличаются от расчётных значений. ОЧС зависят от природы нефтепродукта, его содержания в смеси и ряда других факторов. У парафиновых углеводородов ОЧС выше действительных на 4 пункта, у ароматических зависимость более сложная. Различие может быть существенным и превышать 20 пунктов. Октановое число смешения важно также учитывать при добавлении в топливо оксигенатов.

Фракционный состав (ФС)

            ФС бензинов характеризует испаряемость топлива, от которой зависит запуск двигателя, распределение топлива по цилиндрам двигателя, полнота сгорания, экономичность двигателя. Испаряемость определяется температурой перегонки 10, 50 и 90 % (об.) выкипания фракций бензина. Температура выкипания 10 % бензина характеризует пусковые свойства. При температуре ниже предельных значений в системе питания двигателя могут образовываться паровые пробки, а при более высоких температурах запуск двигателя затруднён. В США пусковые свойства двигателя характеризуют количеством топлива, выкипающем до 70 0С. Температура выкипания 50 % характеризует скорость перехода двигателя с одного режима работы на другой и равномерность распределения бензиновых фракций по цилиндрам. Температура выкипания 90 % фракций и конца кипения влияют на полноту сгорания топлива и его расход, а также на нагарообразование в камере сгорания в цилиндре двигателя. В ГОСТ Р 51105-97, который действует с 01.01.99 г., ФС бензина определяется при температуре выкипания 70, 100 и 180 0С.

Давление насыщенных паров (ДНП)

            ДНП даёт дополнительное представление об испаряемости бензина, а также о возможности образования газовых пробок в системе питания двигателя. Чем выше давление насыщенных паров бензина, тем выше его испаряемость. По ФС бензина рассчитывают индекс испаряемости.             Бензины, применяющиеся в летнее время, имеют более низкое ДНП. Для обеспечения необходимых пусковых свойств товарного бензина, в его состав включают лёгкие компоненты: изомеризат, алкилат, бутан, фр. н.к. – 62 0С.

Химическая стабильность (ХС)

В процессе хранения, транспортирования и применения бензинов возможны изменения в их химическом составе, обусловленные реакциями окисления и полимеризации. Окисление приводит к понижению октанового числа бензинов и повышению его склонности к нагарообразованию. Для оценки ХС используют показатели содержания фактических смол, индукционного периода окисления.

Содержание сернистых и ароматических соединений

Активные сернистые соединения, содержащиеся в бензинах, вызывают сильную коррозию топливной системы и транспортных емкостей; полнота очистки бензинов от этих веществ контролируется анализом на медной пластинке. Неактивные сернистые соединения коррозию не вызывают, но образующиеся при их сгорании  газы вызывают быстрый абразивный износ деталей двигателя, снижают мощность, ухудшают экологическую обстановку.

Среди ароматических соединений наиболее опасными для здоровья и жизни человека являются бензол и полициклические. Их токсическое действие объясняется возможностью его окисления в организме. В связи с этим в последних нормативных документах ограничено допустимое содержание серы, бензола и ароматических соединений в бензинах.

6.Требования европейских стандартов Евро-2, Евро-3 и Евро-4 к составу и качеству автомобильных бензинов.

Требования к бензинам норм ЕВРО

Показатели

Евро-2

Евро-3

Евро-4

Содержание бензола, % не более

5,0

1,0

1,0

Содержание серы, не более

0,05%

150ppm

30ppm

Содержание ароматических компонентов, %

42

30

Содержание олефиновых компонентов, %

18

14

Содержание кислорода, %

2,3

2,7

Фракционный состав, %:

-до 100°С перегоняется не менее

-до 150°С перегоняется не менее

46 75

46 75

Давление насыщенных паров, кПа, не более

60

60

Наличие моющих присадок

Обяз

Обяз

Как видно из таблицы, динамика изменений требований европейских стандартов для автомобильных бензинов указывает на снижение содержания в них бензола, серы, ароматических и олефиновых компонентов, обязательное введение моющих присадок и увеличение концентрации синтетических кислородосодержащих компонентов.

7.Требования европейских стандартов Евро-2, Евро-3 и Евро-4 к составу и качеству дизельных топлив.

Политика Евро направлена на уменьшение содержания в выхлопных газах нежелательных и вредных веществ в топливе.

Имеются ввиду сернистые соединения, угарный газ и полиароматические углеводороды, такие как бензол.  Существуют определенные требования к различным видам дизельного топлива.

Рассмотрим основные виды дизельного топлива и их стандартные показатели.

 

ДТ ЕВРО 2

ДТ ЕВРО 3

ДТ ЕВРО 4

ДТ ЕВРО 5

Цетановое число, не менее

53

55

55

55

Содержание сернистых соединений, мг/кг

500

350

50

10

Содержание СО в выхлопе, г/кВт*ч 

4,0

2,1

1,5

< 1,5

Доля полициклических углеводородов

5%

2%

2%

2%

Температура вспышки

55

55

55

55

8.Основные компоненты входящие в состав авиационных бензинов. Их характеристики.

Компонентный состав авиационных бензинов зависит в  основном от их марки и в меньшей  степени, чем для автомобильных  бензинов, определяется набором технологических  установок на нефтеперерабатывающем  заводе.

Базовым компонентом  для выработки авиационных бензинов марок Б-92 и Б-91/115 обычно являются бензины каталитического риформинга. В качестве высокооктановых компонентов  могут быть использованы алкилбензин, изооктан, изопентан и толуол.

Бензины каталитического риформинга обладают высокой детонационной стойкостью на богатых и бедных смесях. Чем больше суммарное содержание в бензине ароматических углеводородов, тем выше его сортность на богатой смеси.

Для обеспечения требований ГОСТ и ТУ по детонационной стойкости, теплоте сгорания, содержанию ароматических углеводородов к базовым бензинам добавляют изопарафиновые и ароматические компоненты - алкилбензин, изомеризат и толуол.

В целях обеспечения требуемого уровня детонационных свойств к авиационным бензинам добавляют антидетонатор тетраэтилсвинец (от 1,0 до 3,1г на 1кг бензина) в виде этиловой жидкости. Для стабилизации этиловой жидкости при хранении авиабензинов добавляется антиокислитель 4-оксидифениламин или Агидол-1.

Как и все этилированные топлива, для безопасности в обращении и маркировки, авиационные бензины должны быть окрашены.

Бензины Б-91/115 и Б-92 окрашиваются в зеленый цвет красителями: жирорастворимым зеленым 6Ж или жирорастворимым зеленым антрахиноновым; Б-95/130 - в желтый цвет жирорастворимым желтым К; Б-100/130 - в голубой цвет органическим жирорастворимым ярко-синим антрахиноновым или 1,4-диалкиламино-антрахиноном.

9.Основные компоненты входящие в состав автомобильных бензинов. Их характеристики.

В составе автомобильных бензинов можно выделить четыре основных компонента: бензины риформинга (до 55 мас.%), каталитического крекинга (до 25 мас.%), алкилат (до 5 мас.%) и изомеризат (до 15 мас.%).

В качества базового сырья для производства автобензинов используют бензины каталитического риформинга или каталитического крекинга. В бензинах каталитического риформинга содержание серы составляет менее 1 мг/кг, олефинов до 1 мас.%, что способствует стабильности при хранении. Но вследствие химии процесса доля ароматических углеводородов составляет более 50% (бензола более 1%), что с точки зрения экологии нежелательно. Для бензинов каталитического риформинга характерна неравномерность распределения детонационной стойкости по фракциям, что негативно сказывается на 14 эксплуатационных показателях топлива. В бензинах каталитического крекинга доля ароматических углеводородов составляет 30-40%, олефиновых углеводородов - 25-35%. Детонационная стойкость распределяется более равномерно по фракциям, октановое число, определенное при помощи исследовательского метода, равно 90-93 единицам. Но содержание серы около 1000 мг/кг недопустимо для бензинов экологического класса 5. Алкилат и изомеризат не смотря на их преимущества, имеют высокую себестоимость.

10.Антидетонационные присадки и добавки к бензинам. Характеристики. Условия применения.

Одно из направлений расширения производства высокооктановых неэтилированных бензинов — применение кислородсодержащих компонентов (оксигенатов). К ним относятся спирты, эфиры и их смеси. Добавление оксигенатов повышает детонационную стойкость, особенно легких фракций, полноту сгорания бензина, снижает расход топлива и уменьшает токсичность выхлопных газов. Рекомендуемая концентрация оксигенатов в бензинах составляет 3—15%, и она выбирается с таким расчетом, чтобы содержание кислорода в топливе не превышало 2,7%. Установлено, что такое количество оксигенатов, несмотря на их более низкую по сравнению с бензином теплотворную способность, не оказывает отрицательного влияния на мощностные характеристики двигателей.

Метилтретбутиловый эфир. МТБЭ считается наиболее перспективным компонентом. На основании положительных результатов государственных испытаний в России разрешено производство и применение автобензинов с содержанием МТБЭ до 15%. Ограничение установлено из-за относительно низкой теплоты сгорания и высокой агрессивности по отношению к резинам. Дорожные испытания показали, что неэтилированные бензины с 7—8 % МТБЭ при всех скоростях движения превосходят товарные бензины. МТБЭ — бесцветная, прозрачная жидкость с резким запахом. Температура кипения 48—55 °С, плотность — 740—750 кг/м3, октановое число по исследовательскому методу 115—135.

Антидетонаторы на основе соединений свинца. В качестве антидетонатора до недавнего времени в основном использовался тетраэтилсвинец (ТЭС) Pb(C2H5)4 — густая бесцветная ядовитая жидкость; плотность — 1659 кг/м3; температура кипения — 200 °С; легко растворяется в нефтепродуктах и не растворяется в воде. Антидетонационная способность ТЭС открыта в 1921 г., а с 1923 г. началось массовое промышленное производство этой присадки.

Наиболее эффективно добавление ТЭС до 0,50—0,80 г/кг, при этом ОЧ повышается на 10-12 ед. (это в 600 раз больше, чем при добавлении такого же высокооктанового углеводорода бензола). При более высокой концентрации значительно повышается токсичность, а детонационная стойкость возрастает незначительно. Увеличение содержания ТЭС может приводить к снижению надежности работы двигателя из-за накопления свинца в камере сгорания, а также усложняет работу обслуживающего персонала при проведении ТО и ремонта двигателей (повышенная токсичность).

Антидетонаторы на основе соединений марганца. В качестве альтернативы алкилсвинцовым антидетонаторам для повышения детонационной стойкости автомобильных бензинов в России допущены и используются при производстве бензинов органические соединения марганца, из которых наиболее перспективны:

• циклопентадиенилтрикарбонилмарганец C5H5Mn(CO)3 — ЦТМ — кристаллический желтый порошок;

• метилциклопентадиенилтрикарбонил марганца CH3-C5H4- Mn(CO)3 — МЦТМ — прозрачная маловязкая жидкость светлоянтарного цвета с травянистым запахом, с температурой кипения 233 °С, плотностью 1388,4 кг/м3 и температурой застывания 1,5 °С. МЦТМ хорошо растворим в бензине и практически нерастворим в воде.

Оба антидетонатора имеют примерно одинаковую эффективность и мало отличаются по эксплуатационным свойствам. Эффективность марганцевых антидетонаторов примерно одинакова со свинцовыми антидетонаторами (при равном содержании присадок) и превосходит их при равной концентрации металлов (Pb и Mn). При этом марганцевые антидетонаторы в 300 раз менее токсичны, чем ТЭС. При низких температурах из бензиновых растворов не выпадают. Марганецсодержащие присадки разлагаются на свету с потерей антидетонационных свойств.

Несмотря на высокую эффективность марганцевых антидетонаторов, применение их ограничено из-за вредного влияния на экологию и ресурс двигателя.

Условия применения антидетонационных присадок

Тип добавки или присадки

Ограничение

концентрации

Причина ограничения

Максимальный прирост ОЧ

Оксигенаты

15%

Относительно низкая теплота сгорания и высокая агрессивность по отношению к резинам

4-6

Свинецсодержащие

0,17 г[РЬ]/дм3

Высокий уровень токсичности и нага- рообразования в камере сгорания

8

Марганецсодержащие

50 мг[Мп]/дм3

Повышенный износ и нагарообразова- ние на свечах зажигания и в камере сгорания

5-6

Железосодержащие

38 мг[Ре]/дм3

Повышенный износ и нагарообразова- ние на свечах зажигания и в камере сгорания

3-4

Ароматические

амины

1-1,3%

Осмоление деталей двигателя и топливной системы. Увеличение износа деталей ЦПГ

6

11.Типы топлив для воздушно-реактивных двигателей. Система обозначения. Основные отличия.

Реактивные топлива вырабатывают для самолетов дозвуковой авиации по ГОСТ 10227-86 и для сверхзвуковой авиации по ГОСТ 12308—89. Согласно ГОСТ 10227—86 предусмотрено производство пяти марок топлива: ТС-1, Т-1, Т-1C, Т-2 и РТ (табл. 1.17). По ГОСТ 12308-89 производят две марки топлива: Т-6 и Т-8В.В настоящее время Российская промышленность по ГОСТ Р 52050-2003 выпускает топливо для иностранных потребителей Джет А-1 (JET A-1)

Массовыми топливами в настоящее время практически являются топлива двух марок: ТС-1 (высшего и первого сортов), РТ (высшей категории качества).

Основное сырье для производства массовых реактивных топлив — среднедистиллятная фракция нефти, выкипающая в пределах температур 140-280 0С.

Топливо ТС-1.В зависимости от качества перерабатываемой нефти (содержания меркаптанов и общей серы в дистиллятах) топливо получают либо прямой перегонкой, либо в смеси с гидроочищенным или демеркаптанизированным компонентом (смесевое топливо) Содержание гидроочищенного компонента в смеси не должно быть более 70 во избежание значительного снижения противоизносных свойств. Гидроочистку используют, когда в керосиновых дистиллятах нефти содержание общей и меркаптановой серы не соответствует требованиям стандарта, демеркаптанизацию — когда только содержание меркаптановой серы не соответствует требованиям стандарта.

Топливо Т-1 —продукт прямой перегонки малосернистых нефтей нафтенового основания с пределами выкипания 130-280 °С. Содержит большое количество нафтеновых кислот и имеет высокую кислотность, Поэтому его подвергают защелачиванию с последующей водной промывкой (для удаления образующихся в результате защелачивания натриевых мыл нафтеновых кислот).

Наличие значительного количества гетероатомных соединений, основном кислородсодержащих, обусловливает, с одной стороны, относительно хорошие противоизносные свойства и достаточно приемлемую химическую стабильность топлива, с другой — низкую термокислительную стабильность, что и было установлено при натурной эксплуатации. В настоящее время производство топлива Т-1 очень ограничено, и его вырабатывают только по первой категории качества.

Топливо Т-2 (первой категории качества) — продукт прямой гонки широкого фракционного состава, выкипающий при температуре от 60 до 280 °С; содержит до 40 % бензиновой фракции, что обуславливает высокое давление его насыщенных паров и низкие вязкость и плотность.

Повышенное давление насыщенных паров топлива Т-2 создает опасность образования паровых пробок в топливной системе самолета, и ограничивает высоту его полета.

Низкая вязкость обусловливает плохие противоизносные свойства топлива, что ограничивает срок службы топливных агрегатов, а низкая плотность ограничивает дальность полетов. Топливо Т-2 является резервным по отношению к топливам ТС-1 и РТ.

Топливо РТ получают, как правило, гидроочисткой прямогонных дистиллятов с пределами выкипания 135-280 °С. В качестве сырья для доочистки используют дистилляты, из которых нельзя получить топливо ТС-1 из-за повышенного сверх нормы содержания общей и меркаптановой серы.

12.Компонентный состав и основные свойства реактивных топлив.

Основное сырье для производства массовых реактивных топлив — среднедистиллятная фракция нефти, выкипающая в пределах температур 140-280 0С.

К основным показателям качества топлив для реактивных двигателей относят плотность, теплоту сгорания, фракционный состав, вязкость, температуру начала кристаллизации, содержание аренов, серы, активных сернистых соединений, смол и непредельных  соединений,  термическую  стабильность. Плотность и теплота сгорания реактивного топлива характеризуют его энергетические возможности. Чем выше плотность, тем большее количество топлива можно загрузить в баки летательного аппарата и увеличить таким образом дальность полета без дополнительной заправки. При использовании топлива, которое имеет высокую теплоту сгорания, с единицы массы или объема выделяется больше энергии, повышается скорость истечения газов из сопла, увеличивается тяга.

Фракционный состав и давление насыщенных паров реактивного топлива в значительной степени влияют на условия образования воздушно-топливных смесей и их сгорание. Чем выше давление паров, тем лучше испаряемость топлива. Понижение вязкости топлива благоприятно сказывается на условиях его распыливания, так как уменьшаются размеры капель. Поскольку, однако, снижение вязкости вызывает ухудшение работы топливной аппаратуры вследствие износа трущихся частей, чрезмерно уменьшать вязкость не следует. Вязкость реактивных топлив ТС-1, Т-1, Т-2, РТ при 20 °С должна быть не менее 1,05—1,50 мм2/с, а утяжеленного термостабильного топлива — не выше 4,5 мм2/с. Важным эксплуатационным показателем топлива для воздушно-реактивных двигателей служит температура начала кристаллизации. Так как при полетах самолетов с дозвуковой скоростью топливо в баках интенсивно охлаждается, то для предотвращения его застывания температура начала кристаллизации должна быть не выше — (55—60) °С. Если в топливных баках самолетов топливо интенсивно охлаждается, то в топливоподающей системе оно, наоборот, нагревается до 150—250 °С. При этих температурах алкены, смолы, меркаптаны начинают разлагаться с образованием нерастворимых в топливе осадков, забивающих фильтры и форсунки, загрязняющих поверхности охлаждения. Поэтому к реактивным топливам предъявляют требования повышенной термической стабильности, что достигается очисткой топлив и введением присадок.

13.Компонентный состав и основные свойства дизельных топлив.

Основу дизельного горючего составляют 3 группы элементов:

1. Парафиновые углеводороды. Это алканы и нефтяные парафины, производные которых присутствуют в метане, пропане и нефти. Их содержание 10-40%.

2. Нафтеновые углеводороды встречаются в виде циклогексана и циклопентана, занимают 20-60% общего состава ДТ. Не присутствуют в газообразных веществах.

3. Ароматические углеводороды. Занимают 15-30% в конечном продукте.

На качество влияют и механические примеси, вода, смолистые и сернистые соединения.

Устойчивость к низким температурам — это основной параметр дизельного топлива, которым определяются условия его использования и особенности хранения.

Другим основным показателем качества ДТ является вышеупомянутое цетановое число. Чем выше его значение, тем увереннее можно судить о более продолжительном ресурсе ДВС. Двигатель равномерно работает, исключена детонация, повышена динамика машины.

По показателю температуры воспламенения определяется степень безопасности использования дизтоплива в ДВС. По фрикционному составу в ДТ определяется, полностью ли будет в цилиндрах сгорать смесь, уровень дымности и степень токсичности выхлопов.

От плотности ДТ зависит, насколько эффективной будет подача горючего по каналам топливной системы, его фильтрация и распыление в форсунках.

Содержание серы. Ее отсутствие в составе делает горючее слишком «пресным» — возникает нехватка в смазке элементов топливной аппаратуры. Однако повышенное содержание серы приводит к преждевременному появлению коррозии на деталях ДВС, быстрому накоплению нагара, повышенному уровню износа ТНВД.

В число основных характеристик ДТ, особенно в современных условиях, вошел показатель чистоты продукта. Это не только продление ресурса узлов и элементов транспортных средств, но и поддержание в норме экологии в местах промышленного производства.

14.Какие показатели положены в основу классификации дизельных топлив.

в России в соответствии с ГОСТ 305-82 дизельное топливо делилось на следующие марки:

  • летнее - используется при температуре воздуха не ниже 0°С и имеет в своем обозначении кол-во серы и температуру вспышки, например, Л-0,2-40;

  • зимнее - применяется при температурах не ниже -20°С и имеет в обозначении кол-во серы и температуру застывания, например, З-0,05 (-25°С);

  • арктическое - применяется до -50°С, имеет в обозначении кол-во серы и температуру застывания, например, А-0,05 (-50°С).

В Европейском союзе в 1993 г. введен стандарт EN 590 (первоначально Евро-1), который претерпел 4 модификации. В настоящее время действует европейский стандарт EN 590-2009, он же ЕВРО-5. Эти стандарты классифицируют дизельное топливо по температурно-климатическим зонам применения: Class A - F для температур от +5 до -20 °С, Class 0 - 4 для температур от -20 до -44 °С.

Соседние файлы в предмете Химия нефти и газа