Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспекты на первые темы.docx
Скачиваний:
6
Добавлен:
09.05.2023
Размер:
1.57 Mб
Скачать

Тема 1. Морфология и таксономия микробов

Клеточные формы Неклеточные формы

(простейшие, грибы, (вирусы, вироиды,

бактерии) прионы)

Три домена, включающие далее царства, типы (отделы), классы, порядки, семейства, роды, виды и подвиды :

  • Домен Bacteria - прокариоты (истинные бактерии или эубактерии);

  • Домен Archaea - прокариоты (архебактерии или археи);

  • Домен Eykarya - эукариоты, включает царство - грибов (Fungi, Eumycota), царство - простейших (Protozoa) и царство - хромовики (Chromista)

  • Бактерии - прокариоты, разделенные на два домена : Barteria (эубактерии) и Archaebacteria (архебактерии)

1. Архебактерии - одна из древнейших форм жизни, не содержат пептидогликан и имеют особые рибосомы. Не вызывают инфекций.

  • Вид - один из основных таксономических категорий, это совокупность особей, имеющих единое происхождение и генотип, объединенных по близким свойствам, отличающим их от других представителей рода.

Например : Escherichia coli

Тема 2. Морфологические формы бактерий

Различают несколько основных форм бактерий - кокковидные, палочковидные, извитые и ветвящиеся, или нитевидные формы :

1. Кокки - шаровидные бактерии (0,5-1 мкм), подразделяются на микрококки, диплококки, стрептококки, сарцины и стафиолококки.

  • Микрококки - отдельно расположенные клетки или в виде пакетов кокки.

  • Диплококки - располагаются парами (пневмококк, гонококк, менингококк), поскольку клетки при делении не расходятся.

  • Стрептококки - клетки округлой формы, составляющие цепочку вследствие деления клеток в одной плоскости и сохранения связи между ними в месте деления.

  • Сарцины - имеют вид пакетов из 8 кокков и более, поскольку делятся в 3 взаимно перпендикулярных плоскостях.

  • Стафилококки - кокки, расположенные в виде грозди винограда в результате деления в разных плоскостях.

2. Палочковидные бактерии (1-8 мкм), по форме бывают короткими (туляремийная палочка), длинными (сибиреязвенная палочка), с закругленными (большинство палочек) и заостренными (фузобактерии) или утолщенными (коринебактерии) концами. Слегка изогнутые палочки - вибрионы (холерный вибрион).

Большинство располагаются беспорядочно, так как после деления клетки расходятся.

3. Ветвящиеся, нитевидные формы и палочки неправильной формы представлены актиномицетами - это ветвящиеся, нитевидные или палочковидные грам «+» бактерии. Делятся фрагментацией нитей (мицелия) на палочковидные и кокковидные формы.

4. Извитые формы - спиралевидные бактерии (спириллы, кампилобактерии, хеликобактерии), имеющие вид штопорообразно извитых клеток.

Тема 3. Структура бактериальной клетки

Особенности строения бактериальной клетки. 

Основные органеллы:

Название

Химический состав

Строение

Функции

Метод обнаружения

Метод окраски

Клеточная стенка

Ригидные свойства клеточным стенкам придаёт пептидогликан

Уграмположительных бактерий наружный слой клеточной стенки содержит липопротеиды,гликопротеиды, тейхоевые кислоты, у них отсутствует липополисахаридный слой.

Многослойный пептидогликан (муреин, мукопептид) 40-90 % массы.

Глицерофасфат, рибитолофосфат, липотейховые , тейовые и тейхуриновые кислоты, полисахариды , липиды , белки.

S- слой содержащий гликопротеиновые и протеиновые молекулы .

Уграмотрицательных бактерий наружный пластический слой четко выражен, содержит липопротеиды, липополисахаридный слой, состоящий из липида А (эндотоксина) и полисахарида (О-антигена). 

Внутренний слой наружной мембраны представлен фосфолипидами.

Клеточная стенка имеет два слоя:

1) наружный – пластичный;

2) внутренний – ригидный

Пептидогликан представлен параллельно расположенными молекулами гликана, состоящего из повторяющихся остатков N-ацетилглюкозомина и N- ацетилмурамовой кислоты, соединённой гликозидной связью . Эти связи разрывает лизоцим.

Клеточная стенка- ригидное защитное образование, обеспечивающие взаимодействие с факторами окружающей среды 1) защитную, осуществление фагоцитоза;

2) регуляцию осмотического давления;

3) рецепторную;

4) принимает участие в процессах питания деления клетки;

5) антигенную (определяется продукцией эндотоксина– основного соматического антигена бактерий);

6) стабилизирует форму и размер бактерий;

7) обеспечивает систему коммуникаций с внешней средой;

8) косвенно участвует в регуляции роста и деления клетки.

Клеточная стенка при обычных способах окраски не видна, но если клетку поместить в гипертонический раствор (при опыте плазмолиза), то она становится видимой.

При окраске по Грамму многослойный пептидогликан удерживает комплекс красителей в виде генциафиолетового и йода : при кратковременной обработке спиртом бактерии остаются окрашенными в сине-фиолетовый цвет . Наоборот грамотрицательные бактерии обесвечиваются спиртом ,поэтому последующая обработка мазка водным фуксином или сафарином окрашивает бактерии в красный цвет.

Цитоплазматическая мембрана

Имеет обычное строение: два слоя фосфолипидов (25–40 %) , поверхностные и интегральные белки.

По структуре она похожа на плазмолемму клеток животных и состоит из двойного слоя липидов, главным образом фосфолипидов , с внедрёнными поверхностными , а так же интегральными белками, как бы пронизывающими насквозь структуру мембраны.

Она обладает избирательной проницаемостью, принимает участие в транспорте питательных веществ, выведении экзотоксинов, энергетическом обмене клетки, является осмотическим барьером, участвует в регуляции роста и деления, репликации ДНК, является стабилизатором рибосом.

При электронном микрокопировании ультратонких срезов представляет собой трехслойную мембрану( 2 темных слоя по 2,5 нм разделены светлым –промежуточным.

Электронограмма бактерии.

Цитоплазма

Растворимые белки , рибонуклеиновые кислоты , включения и многочисленные мелкие гранул –рибосом, ответственных за синтез белков. Гликоген, полисахариды , бетаоксимаслянная кислота, полифосфаты(волютин), вода 50-60%.

Имеет жидкую структуру в которой находится её компоненты представленные различными включениями в виде гранул гликогена , полисахаридов и полифосфатов.

1)объединение всех компонентов клетки в единую среду

2)среда для прохождения химических реакций

3)среда для существования и функционирования органоидов.

Легко выявляется с помощью специальных методов окраски (например по Нейссеру) в виде метахроматических гранул.

Метод окраски по Нейссеру

Нуклеоид

Двунитевая ДНК замкнутая в кольцо

Нуклеоид- эквивалент ядра у бактерий . Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной в клубок.

Участвует в делении клетки, а так же хранит и передаёт наследственную информацию.

Нуклеоид выявляется в световом микроскопе после окраски специфическими для ДНК методами по Фельгену или Романовскому-Гимзе.

Метод окраски по Фельгену или Романовскому –Гимзе.

Плазмиды

Ковалентно замкнутые кольца ДНК.

Внехромосомные факторы наследственности –представляющие собой ковалентно замкнутые кольца ДНК, расположенные в цитоплазме или интегрированные с хромосомой.

Устойчивость к антибиотикам (R плазмиды) , способность к передаче наследственного материала при конъюгации(F плазмиды) , продукция бактериоцинов, в частности колицинов , подавляющих рост других бактерий (Col плазмиды).

Выявляется с помощью специальных методов окраски.

Метод Фельгена . Подготовка реактива Шифа Получаем окраску в красный цвет.

Рибосомы

Рибонуклеиновые кислоты (РНК) 16S pPHK (входящую в состав малой субъединицы) и 23SрРНК (входящую в состав большой субъедин. Белок.

Рибосомы бактерий имеют размер около 20нм и коэффициент седиментации 70S.Могут диссоциировать на 2 субъединицы 50S и 30S.

На рибосомах происходит синтез белка и полипептидных молекул.

Микроскопическое исследование с помощью электронного микроскопа.

  • Капсула, микрокапсула, слизь

Капсула - слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы.

Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы.

Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).

Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2 мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слизь - мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде.

Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.

  • Жгутики.

Жгутики бактерий определяют подвижность бактериальной клетки, представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков - у грамположительных и 2 пары дисков - у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик.

Жгутики состоят из белка - флагеллина (от flagellum - жгутик); является Н-антигеном. Субъединицы флагеллина закручены в виде спирали.

Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др.

Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

  • Пили

Пили (фимбрии, ворсинки) - нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью.

Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Пили многочисленны - несколько сотен на клетку. Однако, половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми "мужскими" клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col-плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми "мужскими" сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.

  • Споры

Споры - своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов.

Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium - веретено).

Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.

Форма спор может быть овальной, шаровидной; расположение в клетке -терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное - ближе к концу палочки (у возбудителей ботулиэма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизмов. В благоприятных условиях споры прорастают, проходя три последовательные стадии: активация, инициация, прорастание.