Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
3
Добавлен:
20.12.2022
Размер:
3.55 Mб
Скачать

Санкт-Петербургский государственный университет Русское общество истории и философии науки

Второй Международный Конгресс Русского общества истории и философии науки

«Наука как общественное благо»

Том 1

Сборник научных статей

Москва Издательство РОИФН

2020

УДК 13+16 (08) ББК 72.3+87.22 Н34

Рецен зен ты:

Баюк Дмитрий Александрович Институт истории естествознания и техники им. С. И. Вавилова РАН

Чеботарева Елена Эдуардовна Санкт-Петербургский государственный университет

Научная редакция и составление – И.Т. Касавин, Л.В. Шиповалова

.

Н34 Наука как общественное благо: сборник научных статей / Научн. ред. и сост. И.Т. Касавин, Л.В. Шиповалова: В 7 томах. Т. 1. [Электронный ресурс]. – Москва: Изд-во «Русское общество истории и философии науки», 2020. – 206 с. ISBN 978-5-6043173-6-5. - Режим доступа: http://rshps.ru/books/congress2020t1.pdf

ISBN 978-5-6043173-6-5 (Т. 1)

ISBN 978-5-6043173-5-8

В сборнике публикуются материалы Второго Международного Конгресса Русского общества истории и философии науки «Наука как общественное благо» (27-29 ноября 2020 года, Санкт-Петербургский государственный университет). В первый том вошли работы участников секций «История, философия и методология естествознания», «Антопологические, социологические и этические проблемы современного естествознания», «Философские проблемы современной физики», «История и философия математики». На Конгрессе рассматриваются современные концептуальные и методологические проблемы истории и философии науки, эпистемологии естественных, технических и социогуманитарных наук.

Для исследователей, преподавателей, аспирантов и студентов, практических работников образовательных и социальных учреждений и общественных организаций.

ISBN 978-5-6043173-6-5 (Т. 1)

УДК 13+16 (08)

 

ББК 72.3+87.22

Мероприятие проведено при финансовой поддержке РФФИ, проект № 20-011-22064

©Русское общество истории и философии науки, 2020

©Авторы, 2020

ЧАСТЬ 1

ИСТОРИЯ, ФИЛОСОФИЯ И МЕТОДОЛОГИЯ ЕСТЕСТВОЗНАНИЯ

Bristol T. Rethinking the History of Science…………………………………………………….... 6

Baraghith K., Feldbacher-Escamilla C.J. The Many Faces of Generalizing the Theory

of Evolution………………………………………………………………………………….......... 8 Feldbacher-Escamilla C.J. Johannes Amos Comenius’s natural philosophy and its successors

in the 17th century Central Europe………………………………………………………………... 11 Čížek J. Johannes Amos Comenius’s natural philosophy and its successors in Central Europe

of the XVII century…………………………………………………………………………………14 Portides D., Raftopoulos A. How Idealization and Abstraction could be distinguished………….. 16 Miranda R.E.R., Raynar J.U. The Epistemic Probity of Functions in Synthetic Biology………... 17

Болдин П.Н. О языке, на котором написана Книга Природы..................................................... 19 Варламова М.Н. Семя и душа как причины эмбриогенеза у Аристотеля…………….……… 22 Дроздова Д.Н. Опыты Джамбаттиста Риччоли с падающими телами и архимедова традиция………………………………………………………………………………………...…25

Ермакова Н.И. Практическое значение диссертации К. Г. Хагена «de stanno» (1775-1777)…28 Коломийцев С.Ю. К вопросу о соотношении научных революций и прогресса в науке…….31 Логинов В.А. История медицины в контексте концепции Дж. Вико (1668–1744)………...….34 Маслаков А.С. Идея бесконечности и эволюция науки раннего Нового времени…………....37 Овчинников С.Е. Супервентность и метафизическая укорененность в контексте конструирования иерархии реальности……………………………………………………...….40 Печенкин А.А. Критика понятия «постнеклассическая наука»………………………….……..43 Поротиков Е.И. Р. Баттерман и критика редукционизма в современной философии физики…………………………………………………………………………………….……..... 45

Сергеев М.Л., Варобев Г.М. Метаязык и организация научной информации в

новолатинских справочных изданиях XVI века……………………………………..………….48 Фурсов А.А. Асимметричная модель отношения между историей науки и философией науки……………………………………………………………………………………………….51

ЧАСТЬ 2

АНТРОПОЛОГИЧЕСКИИЕ, СОЦИЛОГИЧЕСКИЕ И ЭТИЧЕСКИЕ ПРОБЛЕМЫ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ

Гороховская Е.А. Влияние социальных факторов на развитие этологии в СССР:

проблема интерпретации………………………………………………………………………....55

Дмитриев И.С. Лидер в науке: локомотив и источник регресса……………………………... 57 Жарков Е.А. Понятие лаборатории: аспект нелокальности…………………………………... 61 Желнова А.М. Проект языка философии медицины в исследовании «логики выбора» и «логики заботы» клинических практик в идеях А. Мол……….…..…..…64

Желтова Е.Л. Подход Бруно Латура к социальной истории техники: pro et contra…..…… 67 Клюева Н.Ю. Нейробиология: интеграция и междисциплинарность………………………... 69 Конопкин А.М. Современные дискуссии о проблеме демаркации…………………………… 71 Кузин И.А. Классификация форм презентизма и антипрезентизма в историографии науки……………………………………...……………………………………74

Маслов В.М., Сорокин Р.В. Ценностная составляющая постнеклассической рациональности и естествознание…………………………………………………...………… 77 Минасян Л.А. Общественная значимость экспериментальной регистрации

гравитационных волн………………………………………………………………………..……80

Петрухина П.С., Пронских В.С. Физика высоких энергий: различия в национальных стилях……………………………………………………………………………………………...83

Сорокина М.А. Разработка концепта хаоса в философии Ж. Делѐза и Ф. Гваттари………… 86 Черникова И.В. Об изменении этоса современной науки…………………………………….. 89

ЧАСТЬ 3

ФИЛОСОСКИЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ ФИЗИКИ

Mattingly J. The constructive role, in physics, of theoretical formulations……………………...…94 Shatalov K.W. The concept of matter……………………………………………………………... 95

Антипенко Л.Г. Комплементарная интерпретация теорем Гѐделя о неполноте

иеѐ физико-математические следствия………………………………………………...…...… 97 Безлепкин Е.А. Метафизика и метафизика науки: спор об основаниях системы категорий...100 Владимиров Ю.С. Метафизика как основания фундаментальной теоретической физики (К формированию научной школы «Основания фундаментальной физики

иматематики»)…………………………………………………………………………………....104

Годарев-Лозовский М.Г. Кинематическая интерпретация волновой функции……………… 107 Головко Н.В. Псиллос против Дж. Лэдимена: структурализм и причинность……………….110 Жаров С.Н. Онтология возможного: Аристотель и современная наука……………………...112 Иванов А.Ф. Новые горизонты детерминизма в постнеклассическую эпоху………………...114 Князев В.Н. Реляционная парадигма в фундаментальной теоретической физике…………... 118 Копейкин К.В. Вольфганг Паули и Карл Густав Юнг: актуальный диалог (на подступах к разрешению «трудной проблемы» сознания и завершению второй квантовой революции) 121 Лещева О.А. Пространство-время в современной научной картине мира…………………....125 Прись И.Е. О контекстуальной «демократизации» копенгагенской интерпретации квантовой механики………………………………………………………………………..……..128

Рыбакова И.А. Новое понимание времени — новая философия? Квантовая механика как ключ к пониманию природы времени……………………………………………………....131 Севальников А.Ю. Локальность или реальность? К вопросу о современных дискуссиях

квантовой механики………………………………………………………………………….…...135

Спасков А.Н. Реальность квантового мира и сознания в субстанциально-информационной технологии………………………………………………………………………………...………138

Терехович В.Э. Роль информации в поисках связей между квантовой теорией

исознанием……………………………………………………………………………….……….140

Фотева А.Ю. Трансцендентальная онтология И.Г. Фихте: перспективы………….…………144 Эрекаев В.Д. Поиски новых онтологий: планковские объекты……………………..…………147 Эртель И.И. Метафизические основания структурного реализма Дж. Уоррала…….………149

ЧАСТЬ 4

ИСТОРИЯ И ФИЛОСОФИЯ МАТЕМАТИКИ

Бажанов В.А., Шевченко Т.В. Природа числового познания как предмет когнитивных исследований……………………………………………………………………………………...153

Барабанова Л.П., Барабанов О.О. История стабильного учебника в России на примере

«Алгебры» А.Н. Барсукова……………………………………………………………….………155

Бычков С.Н. Математические модели и математическое моделирование……………….…...158 Зайцев Е.А. Философия математического образования: от истории к методике ……….……162 Косилова Е.В. Спекулятивный реализм К.Мейясу и нео-пифагореизм………….……………165 Кричевец А.Н. Математические объекты, мозг и опыт……………………………….………..168 Левина Т.В. Постигая абсолютную бесконечность: Георг Кантор и Павел Флоренский…....171 Мануйлов В.Т. Полотовский «Немецкий конструктивизм» о математическом знании……...174 Полотовский Г.М. Очерк истории топологического образования в Нижнем Новгороде…...179 Резников В.М. Об универсальной применимости и эффективности математики………….…182

Rodin A.V. Euclid's Geometry as a Gentzen-style Theory: Euclid and Today's Mathematical

Practice…………………………………………………………………………………………..…185

Синкевич Г.И. Серебряный век Петербургской математики……………………………….….187

Старикова И.В., Ван Бендегем Ж.П. Зачем мы пробуем (теоремы)?........................................191

Хромченко А.С. Понятие аналитической истины в контексте применимости математики..…194 Целищев В.В. Интенсиональный «прыжок веры» в математической практике………….….197

Шапошников В.А. Математика как наука о бесконечном: от прекрасного к возвышенному.200

Шиян Т.А. Может ли математика помочь философскому анализу?..........................................

203

ЧАСТЬ 1

ИСТОРИЯ, ФИЛОСОФИЯ И МЕТОДОЛОГИЯ ЕСТЕСТВОЗНАНИЯ

RETHINKING THE HISTORY OF SCIENCE

Bristol Thomas Henry

President, Institute for Science, Engineering and Public Policy

Portland State University

E-mail: bristol@isepp.org

Advances in 20th century history and philosophy of science as well as modern physics call for serious rethinking of the still dominant logico-mathematical histories of successful inquiry. Kuhn‘s conceptual ―revolutions‖ undermined the simplistic logicomechanical notions of both scientific method and axiomatizable knowledge. Quantum theory forces us to a post-mechanical, participant framework and suggests a very different understanding of the history of successful inquiry. Earlier, Lazare Carnot, noting that

‗rational mechanics‘ could not make sense of engineering practice, developed a postmechanical, participant framework. Our reconsideration favors a participant engineering understanding of both quantum theory and the history of successful inquiry.

Keywords: history of science, Lazare Carnot, Kuhn, least action, engineering research

The beginning of modern science is often identified with Galileo and his thesis that the language of reality is mathematical – actually geometrical. The representation of knowledge that developed followed the axiomatic Euclidean Paradigm. The expectation of this research program was that once you had the Mechanical Theory of Everything you would be able to derive or deduce the succession of states of the universe (or any sub-system) from initial conditions. The tacit presupposition was that reality was governed by One – complete and consistent – causal mechanical order. Furthermore, it ‗stood to reason‘ that if reality was so ordered that successful inquiry should proceed consistently – logico-mathematically (viz. no revolutions, no discontinuities).

There have been three main lines of critique of the mechanistic orthodoxy.

First, in history and philosophy of science, Kuhn‘s rigorous historical scholarship argued that successful inquiry was not, as logical positivists predicted, a consistent logico-mathematical progression – even in the ideal. There were numerous logico-mathematical, conceptual discontinuities. Kuhn‘s challenge was extended by other ―rebels‖, such as Popper, Feyerabend and Lakatos.

Second, the contributions of Russell, Whitehead and Goedel established that neither logic nor mathematics were in themselves complete and consistent as the Euclidean Paradigm presupposed.

Third, the new physics developed by Planck, Einstein, Heisenberg, Bohr, Pauli et al. called for a more general, post-mechanical framework formally subsuming both Newtonian and Maxwellian mechanics, understanding them as idealized special cases.

Rethinking the History with Fresh Eyes

Reconsidering the history of successful inquiry (viz. ―science‖) in the 17th-19th centuries with fresh eyes, we find two distinct competing traditions. The first and dominant is the Laplacian (Newtonian) research program. It assumes a completely deterministic, mechanical reality in the clockwork research tradition. With the introduction of thermodynamics this program bifurcated. The inapplicability of Newtonian mechanics to the kinetic theory of gases led Maxwell to introduce an ―opposite‖ acausal probabilistic mechanics that developed into statistical mechanics – the cloud-like research tradition. The clock and cloud sub-traditions remain today in an uncomfortable (viz. incoherent) alliance within the deterministic, largely atomistic, mechanical research program. Clausius-Boltzmann thermodynamics supposedly preserved the foundations of mechanical research program.

The second, competitive research program, arose through the work of Euler, Leibniz and Maupertuis. It is based on a more general indeterminate, problematic ―empirical mechanics‖. In the

6

mature work of Lazare Carnot and its application by Sadi Carnot this became the engineering formulation of thermodynamics.

Atkins notes two historical paths to thermodynamics. ‗Sadi Carnot focused on understanding heat engines and Boltzmann sought an atomistic understanding‘. According to Atkins these two traditions are both alive and well in the modern milieu of practical thermodynamics. The Carnots‘ engineering thermodynamics is incommensurable with the physicists‘ statistical thermodynamics.

Per hypothesis, with fresh eyes it appears that the real history of ―science‖ in the 17th-19th century was broader than the mechanical research program. The point is that the proper framework for understanding the history of successful inquiry is thermodynamics – not mechanics.

The Principle of Least Action

The history of the Principle of Least Action (PLA) is central to, and illuminates, the historical debate over the proper understanding of thermodynamics and the account of successful inquiry. First formulated by Maupertuis, the question appeared to be about the correct mechanics. There were two competing proposals as to what was conserved in motion. Was it mv or mv2? Mechanical frameworks are defined by what is conserved (viz. and the corresponding symmetry principle). Maupertuis solution argued that all ―real‖ motion involved an irreducible component of both mv and mv2. Since mv and mv2 are incommensurable (viz. per hypothesis, complementary), his new theory of change was post-mechanical, subsuming the classical mechanical options as ideal special cases. In his new theory, all change, all ―action‖, was ―mechanically dualistic‖.

Maupertuis reasoned, for example, that to have a regular planetary orbit there must be a balanced (viz. optimum) combination of mv and mv2. For Maupertuis, these optimum combinations (viz. least actions) appeared to be like ―solutions‖ to some engineering problem – like how to create a regular orbit. For Maupertuis, the solar system reflected ―God‘s engineering solutions.‖

Two Paths of PLA

Historically, there were two lines of development from Maupertuis‘s PLA. The LagrangeHamilton line offered an axiomatizable, deterministic mechanical interpretation. The Leibniz-Carnot line embraced the post-mechanical indeterminacy leading to engineering thermodynamics. Euler and

Leibniz both understood the PLA prior to Maupertuis. Euler‘s response to Maupertuis‘s formulation was: ―of course, you are correct – but that‘s not very useful.‖ Euler‘s comment is the key to understanding why there were divergent histories of thermodynamics, and why there remain two alternative modern formulations.

Lazare Carnot’s Engineering Research Program

In initiating his research program, Lazare Carnot notes that the axiomatizable ―rational mechanics‖ give no account of engineering practice. For the engineer there are always tradeoffs: ―we always lose in time or velocity what we gain in power.‖ The engineer, of necessity, must choose how to accomplish a task (viz. to problem solve) – faster, slower, perhaps using a pulley or other machine. The engineer is constrained but always faces the irreducible options of an indeterminate future.

As Drago characterizes it, Lazare moves us from a classical, deterministic mechanical view of reality and the corresponding view of knowledge as being organized axiomatically (AO), to a more comprehensive post-mechanical view of reality where the future is always partially indeterminate (partially constrained). In the engineering view, successful inquiry and practice require genuine exploration (post-logico-mathematical), resulting in knowledge that reflects a problematic organization (PO).

Lazare proposes to develop Maupertuis‘s ―vague‖ PLA in the practical engineering context – as a Principle of Optimization. For Maupertuis, all change – action – is an optimum combination of the opposite idealized mechanics. In Lazare‘s indeterminate problem-based engineering context the optimum ―solution‖ depends on the specifics of the problem (as conceived) and requires a creative choice by the engineer. Later developments of the PLA recognized that the ―solution‖ to an optimization problem was not always the ―least‖ action. It could also turn out to be the greatest action. One way or the other the optimum solution was always an extremum: least (most efficient) or greatest (most powerful).

American Pragmatist John Dewey offered two representations of inquiry. In the spectator representation, the inquirer is detached and external to the system of study. The spectator attempts to discover the universal laws governing objective reality – ―out there‖. In the participant representation,

7

the inquirer is inside, embodied in reality. It is crucial to recognize that for the participant the question has changed. The spectator is asking about how the universe – ―out there‖ – works, seeking a complete and consistent description of an objective deterministic reality, confirmed by successful (detached) predictions. For the participant, the question is about how to work in a constrained but progressively evolving world. For the participant, meaningful knowledge always has some potentially beneficial (viz. problem solving) application. The participant-engineer wants to know how to alter the course of events and how to develop the structures and processes of reality.

Per hypothesis, there is always a parallel between one‘s theory of the ordering of reality and one‘s theory of successful inquiry. I shall refer to this as the Parallel Hypothesis. If there are irreducible discontinuities in successful inquiry, from the perspective of an embodied participant inquirer, the natural expectation (viz. following the Parallel Hypothesis) would be that there must be irreducible discontinuities in the nature of reality and in the evolution of the universe. Perhaps our activity as inquirers and agent-engineers has some role in that evolution.

Modern quantum theory is really a thermodynamic theory. The expression ‗quantum mechanics‘ has been misleading. Planck‘s black body research, funded by the German electric light industry, concerned engineering thermodynamics – not mechanics. In quantum theory the inquirer is a participant. His reality, prior to his actualizing choice, is constrained but irreducibly indeterminate. Yourgrau notes that Planck was ―obsessed‖ with Maupertuis. De Broglie emphasized that the result of all actualizations is ―middle ground‖, necessarily including an irreducible aspect of both the idealized particle and wave mechanics. The so-called collapse of the wave function in any practical or experimental setting requires an ‗action‘ by an agent. In the Leibniz-Carnot ontology all change is due to the spontaneous action of agency – and reality is agency all the way down.

Conclusions

The accounts of the history of successful inquiry have been dominated by limited ―rational reconstructions‖ that presuppose a mechanical reality studied logico-mathematically by a detached inquirer. The practice of the mechanistic over-reach has been to either ignore historical records or to reinterpret them into a mechanical narrative: ―It must have happened this way – because it stands to reason.‖

Successful inquiry only makes sense in a participant-engineering worldview, where learning it is a self-referentially coherent problem-solving process.

I conclude that both quantum theory and the engineering worldview are participant theories. Since quantum theory is a thermodynamic theory and engineering thermodynamics provides the correct understanding of thermodynamics, the correct understanding of quantum theory must be within the framework of a participant-engineering worldview.

THE MANY FACES OF GENERALIZING THE THEORY OF EVOLUTION

Karim Baraghith

Duesseldorf Center for Logic and Philosophy of Science (DCLPS)

E-mail: kbaraghith@gmail.com

Christian J. Feldbacher-Escamilla

Duesseldorf Center for Logic and Philosophy of Science (DCLPS)

E-mail: christian.feldbacher-escamilla@hhu.de

Ever since proposals for generalizing the theory of natural evolution have been put forward, the aims and ambitions of both proponents and critics have differed widely. Some consider such proposals as merely metaphors, some as analogies, some aim at a real generalization and unification, and some have even proposed to work out full reductions. In this paper, it is argued that these different forms of generalizing the theory of evolution can be systematically re-framed as different approaches for transferring justification from the natural to the cultural realm, and that their differences are basically a matter of degree. With the help of such a classification it should be come clearer what to expect, but also what not to expect from the different approaches.

Keywords: theory of evolution, Newton, Darwin, Aldrich, biology

8

Newton‘s mechanics provided a unificatory framework for modern physical sciences. Likewise, Darwin‘s theory of selection provided such a framework for the life sciences. The changes in theory and model building, the rearrangement of knowledge, but also the restructuring of scientific institutions and curricula which came along with it are important causes of the fact that nowadays biology is one of the most advanced and leading branches of science. Influential social scientists always aimed at embedding their research into a broader scope of evolutionary thinking:

―Whether

the adjective ‗biological‘ be used or

not, the

principle of evolution is firmly established as applying to the

world of living things. Here the social aspect of human life

must be

included. Such basic concepts of organic evolution as

variation,

selection, adaptation, differentiation, and

integration

belong

at

the centre of our concern, when appropriately

adjusted to social and cultural subject matter.‖ (Parsons 1966,

p.2)

 

 

 

Biologists themselves popularized the idea of expanding the theory of evolution beyond the boundaries of biology: ―Darwinism is too big a theory to be confined to the narrow context of the gene‖ (Dawkins 1976, p.191). Ever since proposals of generalizing the theory of natural evolution have been put forward, the motives, aims, and ambitions of both proponents and critics have differed widely. Some consider such proposals as nice-to-have metaphors (cf. Gould 1988), some as analogies (cf. Dawkins 1976), some aim at a real generalization and unification (cf. Mesoudi 2011), and some have even proposed to work out reductions (cf. Wilson 1975).

In this contribution, we provide a systematic classification of such diverse approaches to and critiques of a generalized theory of evolution. We propose a framework of classification

which reduces

the different background motives, aims, and ambitions to one single factor

that

is

shared by

all these forms of relating natural and cultural evolution, namely

that

of

transferring justification.

 

 

We think what is most relevant in the d i ffer en t metaphor-, analogy-, generalization-,

and reduction cases is its different estimation regarding transferring justification. The idea is as follows: a source system like natural evolution consisting of hypotheses, models, and theories H’ and evidence E’ is linked to a target system like cultural evolution consisting of the respective hypotheses, models, and theories H and evidence E. Theory building and unification within the source system was successful in justificatory terms. Therefore , by linking the target with the source system, proponents of such a linking hope for some transfer of success. Such a transfer is about properties of and relations between H’, E’ like the certainty of H’, the degree of unification of H’ or the confirmation of H’ by help of E’. And since by such a transfer the certainty/unification/confirmation of H’, E’ is intended to be employed for increasing that of H, E, it is natural to consider the problem of transferring justification as a problem of employing indirect evidence in the sense of using properties of H’, E’ as indirect evidence for properties of H, E.

We will proceed as follows: in part 1, we discuss different ways of employing indirect evidence by bringing together models of philosophy of science in a very selective way, which is intended to suit our later applications. As we will see, the differences in the metaphor-, analogy-, generalization-, and reduction-talk about transferring justification and employing indirect evidence is a matter of degree. In part 2, we will come to the application of our conceptual framework to the different approaches of extending evolutionary theory to the cultural domain and provide a systematic classification of different proposals for and critiques of generalizing the theory of evolution.

Our main conclusion will be that the differences in the metaphor-, analogy-, generalization-, and reductionapproach to generalized evolution are matters of degree regarding transfer of justification and employing indirect evidence. Metaphors ascribe zero weight to indirect evidence and consider it to be relevant in a context of discovery, but not in a context of justification. Analogies stress functional features, but cannot offer a background theory for linking target and source. It does allow for justificatory impact and usage of indirect evidence, although only in a very weak sense. For example, Darwin himself—as one of the pioneers of evolutionary thinking—

9

builds heavily on analogies to human societies in his work, often to make his ideas more vivid to the reader, but also to increase justification. He compares biological species with human languages, (Darwin 1871/2003, p.90):

―The formation of different languages and of distinct species, and the proofs that both have been developed through a gradual process, are curiously parallel …. The survival or preservation of certain favoured words in the struggle for existence is natural selection.‖

In an even stronger manner, generalization or unification is based on a background theory linking target and source and has a focus on structural features. This brings even more transfer of justification and systematic employment of indirect evidence with it. For instance, Aldrich et al. (2008, pp. 579) write:

―What is the difference between analogy and generalization? With an analogy, phenomena and processes in one domain are taken as the reference point for the study of similar phenomena or processes in another domain. Differences are regarded as disanalogies. On this basis, for example, social evolution is clearly disanalogous to genetic evolution, because of the very different entities and mechanisms of replication. … Generalization in science starts from a deliberately copious array of different phenomena and processes, without giving analytical priority to any of them over others. Where possible, scientists adduce shared principles.‖

Last but nor least, reduction transforms indirect evidence into direct evidence and, hence, allows for the strongest form of transferring justification and employing indirect evidence. These different ways of using indirect evidence were and are still applied in biological theorizing. Ever since evolutionary theory was formulated, indirect evidence was sometimes used for transferring justification from the cultural to the natural realm. What is more important for our purpose of classification is the reverse direction, namely the employment of indirect evidence from natural evolution for social sciences. We will outline how analogical, unificatory, and reductive transmission of justification might work and how they form a pattern increasing in strength. This conceptual framework allows for a more fine-grained distinction regarding the many approaches to generalizing the theory of evolution.

It is important to note that our investigation will only be about classifying such approaches. Whether and which form of justificatory transfer and employment of indirect evidence will be successful, is of course not tackled by this: ―In the end, the success or failure of [generalizing the theory of evolution] will decide whether memes are just a meaningless metaphor or the grand new unifying theory we need to understand human nature‖ (Blackmore 1999, p. 9).

References

1.Aldrich H.E., Hodgson G.M., Hull D.L., Knudsen T., Mokyr J., Vanberg V.J. In Defence of Generalized Darwinism // Journal of Evolutionary Economics. 2008. Vol. 18, no. 5. P. 577-596. DOI: 10.1007/s00191-008-0110-z.

2.Blackmore S.J. The Meme Machine. Oxford: Oxford University Press, 1999.

3.Darwin C. The Descent of Man. London: Gibson Square, 1871/2003.

4.Dawkins R. The Selfish Gene. Oxford: Oxford University Press, 1976.

5.Feldbacher-Escamilla C.J., Gebharter A. Confirmation Based on Analogical Inference // Canadian Journal of Philosophy. 2019. P. 1-21. DOI: 10.1017/can.2019.18.

6.Gould S.J. An Urchin in the Storm: Essays about Books and Ideas. New York: W.W. Norton

&Company, 1988.

7.Mesoudi A. Cultural Evolution: How Darwinian Theory Can Explain Human Culture and Synthesize the Social Sciences. Chicago: University of Chicago Press, 2011.

10

Соседние файлы в папке Экзамен Зачет Учебный год 2023