Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект сварка.docx
Скачиваний:
4
Добавлен:
27.12.2020
Размер:
146.45 Кб
Скачать

Легированная сталь представляет собой материал, физические и химические свойства которого улучшаются за счет добавления легирующих элементов в состав.

  • Никель – позволяет сделать материал не только прочным, но и пластичным. Именно этот элемент, входящий в состав, отвечает за стойкость к коррозии;

  • Хром – также отвечает за устойчивость к коррозии, благодаря ему получается нержавеющая сталь, делает ее твердой и прочной;

  • Ванадий – благодаря этому элементу структура стали становится мелкозернистой, плотной;

  • Медь – помимо стойкости к коррозии противодействует кислотам;

  • Вольфрам – позволяет материалу оставаться твердым при увеличении температуры (нагреве);

  • Марганец, входящий в состав, отвечает за износостойкость;

  • Кремний – делает металл упругим, отвечает за магнетизм;

  • Если в состав входит алюминий, то он позволяет становиться материалу жаростойким.

\ При их введении кристаллическая решетка рушится за счет различия в формах электронов, а также атомных величин. В состав могут входить две, три и более примесей. Это зависит от того, какой конечный продукт нужно получить.

В состав могут также входить титан, кобальт, молибден, отвечающие за прочность, твердость и пластичность материала, который приобретает все перечисленные свойства в основном после того, как будет пройдена термообработка.

  1. Низколегированная – состав легированных добавок не превышает 2,5%. Конструкционная сталь представлена в ГОСТ 5958-57 (в зависимости от состава);

  2. Среднелегированная – добавки, входящие в состав, находятся в диапазоне 2,5-10%;

  3. Высоколегированная  – процент примесей, входящих в состав, превышают 10% (до 50%).

Также классификация подразделяется на жаропрочную (более 1000 градусов), коррозино-устойчивую, по химическому распаду на жароустойчивую и окалиноустойчивую (при 550 градусах).

Конструкционные легированные стали. Их используют для изготовления деталей машин и механизмов, приборов, ответственных металлических конструкций. К этой группе относят среднелегированные и в основном низколегированные стали. Низколегированная сталь является переходной между углеродистыми и легированными сталями, она по своей основе соответствует малоуглеродистой стали (0,1 – 0,2%С), легированной кремнием, марганцем, хромом, никелем, медью, ванадием, ниобием и некоторыми другими элементами в небольших количествах.

Марганцовистые стали выпускают следующих марок: 10Г2, 14Г2, 35Г2, 50Г2 и др. Сталь 10Г2 отличается высокой пластичностью, хорошей свариваемостью, применяется для изготовления змеевиков, фланцев, штуцеров, пучков труб и крепежных деталей. Изделия из нее могут работать при низких температурах (до –70°С). Стали 35Г2, 50Г2 имеют повышенную износостойкость и служат для изготовления осей, небольших коленчатых валов, штоков, шестерен, пружин, амортизаторов. Марганцовистые стали хорошо поддаются обработке резанием и штамповке в холодном состоянии.

Хромистые, хромоникелевые стали делят на цементуемые и улучшаемые. Из цементуемых сталей (например, 15Х, 20Х, 15ХРА, 12Х2Н4А, 18ХГТ) изготовляют детали (зубчатые колеса, шестерни, плунжеры, шлицевые валики, поршневые пальцы, толкатели и др.) относительно небольших размеров, работающие на износ при тяжелых нагрузках и имеющие высокие твердость поверхностного слоя и прочность сердцевины. Улучшаемые стали (например, 35Х, 38ХА, 35ХРА, 37ХН3А, 38ХНЗМФ) обладают высокой прочностью, пластичностью, высоким пределом выносливости, малой чувствительностью к отпускной хрупкости, хорошей прокаливаемостью (глубина закалки до 20 мм). Из них изготовляют детали крупных сечений, такие, как роторы турбокомпрессоров, фрикционные диски прессов, кривошипы, валы больших диаметров, шестерни крупных размеров и др.

Инструментальные легированные стали. Общие требования для всех инструментальных сталей – высокая твердость и прочность при удовлетворительной вязкости, хорошая износостойкость. Кроме того, инструментальные стали должны хорошо закаливаться, а сталь для режущего инструмента должна иметь высокую теплостойкость (красностойкость). Инструментальные стали применяют для изготовления режущего, ударно-штампового и измерительного инструмента.

Для режущего инструмента применяют низколегированные инструментальные стали с суммарным содержанием легирующих элементов от 1 до 6 % и углерода от 0,9 до 1,2 %. Основные легирующие элементы для сталей этой группы – хром, вольфрам или ванадий, которые, являясь сильными карбидообразующими элементами, несколько увеличивают твердость закаленной стали и значительно повышают ее износостойкость. Из сталей X, 9ХС, ХВГ, ХВСГ изготовляют сверла, фрезы, метчики, плашки, развертки, протяжки. На инструменте ставят клеймо с обозначением марки стали.

Для изготовления режущего инструмента, работающего при высоких скоростях резания и применяемого для обработки труднообрабатываемых материалов, применяют быстрорежущие стали, которые относят к высоколегированным сталям. Основные легирующие элементы для быстрорежущих сталей вольфрам, кобальт, молибден (более 1%) , ванадий, хром. Стали Р9Ф5, Р9К10, Р18К5Ф2, Р18, Р6М5 сохраняют красностойкость до 650 °С и твердость не ниже HRC 60. Высокие режущие свойства быстрорежущей стали достигаются термической обработкой, состоящей из нагрева до 1270—1290°С и последующего трехкратного отпуска при 560°С.

Легированные стали и сплавы с особыми свойствами. К этой группе относятся стали и сплавы на основе железа, в которых суммарное содержание легирующих элементов составляет более 10%: коррозионно-стойкие, износостойкие, жаропрочные, жаростойкие, магнитные, немагнитные, электротехнические, с особыми упругими свойствами и др.

Коррозионно-стойкие стали и сплавы получают при легировании железа с элементами, повышающими электрохимический потенциал сплава. Таким элементом, в частности, является хром. Сплавы, содержащие более 12% хрома, имеют электроположительный потенциал и обладают хорошей коррозионной стойкостью на воздухе, в воде, растворах солей, во многих щелочах, органических, а также в неорганических кислотах (в зависимости от их концентрации) и в других агрессивных средах. В состав этих сталей вводят также никель, марганец, титан, молибден.

Коррозионно-стойкие стали применяют для изготовления гальванических ванн, ванн промывки деталей в горячей воде, для изготовления деталей насосов для перекачки электролитов, теплообменной аппаратуры.

Коррозионно-стойкие хромистые стали 08X13, 12X13, 20X13, 30X13, 40X13, 12X17, 15Х25Т, 08Х17Т, 14Х17Н2 обладают достаточной стойкостью в условиях загрязненного воздуха, воды, пара, в растворах щелочей слабой концентрации, в некоторых кислотах. Наибольшая коррозионная стойкость указанных марок сталей достигается после термической обработки.

Хромоникелевые и хромоникелемолибденовые коррозионно-стойкие стали 12Х18Н9, 12Х18Н9Т, 04Х18Н10, Х17Н13М2Т, 14Х17Н2, 06ХН28МДТ получают увеличением содержания хрома или добавлением небольших количеств никеля к хромистой стали для увеличения ее коррозионной стойкости. Эти стали менее прочны, чем хромистые, но более пластичны. Широко применяют для сварных конструкций, работающих в высокоагрессивных средах, для изготовления деталей машин, используемых в пищевой промышленности.

Кроме того, из этих сталей изготовляют детали теплообменных аппаратов, мембран, сильфонов, вентиляторов (эксплуатирующихся в химических цехах). Для получения наибольшей коррозионной стойкости эти стали закаливают в воде после нагрева при 1100—1150°С.

Для экономии дорогостоящего никеля его частично заменяют марганцем. Например, сталь 10Х14Г14Н3 рекомендуется как заменитель стали 12Х18Н9; 08Х18Г8Н2Т как заменитель стали 08Х18Н10Т.

Эти стали и сплавы применяют для изготовления деталей и узлов автоматических линий

Жаропрочными называют стали и сплавы, способные работать в нагруженном состоянии и сохранять достаточную механическую прочность при высоких температурах (500—1000°С) в течение определенного времени от 100 до 100 000 ч.

Основными легирующими элементами в этих сталях и сплавах являются хром и никель. Для упрочнения сплава и уменьшения скорости ползучести добавляют тугоплавкие металлы: молибден, ниобий, вольфрам. Разработаны различные марки этих сталей, например 15Х11МФ, 15Х25Т, 09Х14Н16Б, ХН45Ю, 20Х23Н18; 40Х9С2, ХН70Ю, ХН77ТЮР. Жаропрочные стали используют преимущественно в котло- и турбиностроении.

Основными легирующими элементами алюминиевых сплавов являются Сu, Mg, Si, Mn, Zn; реже – Li, Ni, Ti.

Алюминиевые сплавы подразделяются на:

- деформируемые, предназначенные для получения поковок, штамповок и проката (листов, плит, прутков и т. п.);

- литейные;

- гранулированные (получаемые методами порошковой металлургии).

Маркировка алюминиевых сплавов осуществляется следующим образом. Буква Д в начале марки обозначает сплавы типа дуралюминов. Буквы АК в начале марки присваивают ковким алюминиевым сплавам, а АЛ –литейным алюминиевым сплавам. Буквой В маркируются высокопрочные сплавы. После букв указывается условный номер сплава. Часто за условным номером следует обозначение, которое характеризует состояние сплава: М – мягкий (отожженный); Т – термически обработанный (закалка + старение); Н – нагартованный; П - полунагартованный.

Конструкционная прочность алюминиевых сплавов зависит от примесей Fe и Si. Они образуют в сплавах нерастворимые в твердом растворе фазы, которые снижают пластичность, вязкость разрушения, сопротивление развитию трещин. Легирование сплавов марганцем уменьшает вредное влияние примесей.

Обработка резанием – срезание с заготовки слоя материала в виде стружки. Срезаемый слой материала называется припуском. Важным в определении обработки резанием является указание на то, что припуск превращается в стружку. Обработкой резанием достигается и заданная шероховатость поверхностей, с которых удаляют припуски.

В машиностроительном производстве обработка металлов резанием – самый распространённый тип технологических процессов

Схемы обработки заготовок резанием

Схемы обработки резанием различаются по инструменту, осуществляющему резание и по тому, как движутся инструмент и заготовка в процессе резания.

1. Токарная обработка (точение). Резание производится резцом. Осуществляется токарная схема движений: главное движение – вращение заготовки, движение подачи – поступательное движение резца на заготовку.

2. Фрезерование. Резание производится фрезой. Осуществляется фрезерная схема движений: главное движение – вращение фрезы, движение подачи – движение заготовки на фрезу.

3. Строгание.

4. Сверление.

5. Протягивание.

6. Шлифование. Шлифовальный круг режет своей шершавой поверхностью – мелкими, твёрдыми, острыми абразивными частицами, вкрапленными в его материал, выходящими на его поверхность. Главное движение – вращение шлифовального круга.

Черновая обработка – с заготовки срезается большая часть припуска, заготовка по форме и размерам приближается к будущей детали.

Чистовая обработка – с заготовки срезается остаток припуска, получается деталь заданной формы и размеров. В большинстве случаев достигается при чистовой обработке и заданная шероховатость (заданное качество) поверхностей детали.

Стальные трубы делят на шесть классов:

Трубы 1-2 классов изготавливаются из углеродистых сталей.

Трубы 1-го класса. Так называемые стандартные и газовые, используют в тех случаях, когда не предъявляются специальные требования, например при сооружении строительных лесов.

Трубы 2-го класса применяют в магистральных трубопроводах высокого и низкого давления для подачи газа. Нефти и воды, нефтехимических продуктов, топлива и твердых тел.

Трубы 3-го класса используют в системах, работающих под давлением и в условиях высоких температур, ядерной технике, в трубопроводах нефтяного крекинга, в печах, котлах и т.п.

Трубы 4-го класса предназначены для разведки и эксплуатации нефтяных месторождений, их применяют как бурильные, обсадные и вспомогательные.

Трубы 5-го класса – конструкционные, используются в производстве транспортного оборудования (автостроении, вагоностроении и т.д.), в стальных конструкциях (мостовые краны, мачты, буровые вышки, опоры), как элементы мебели и т.д.

Трубы 6-го класса применяются в машиностроении для изготовления цилиндров и поршней насосов, колец подшипников, валов и других деталей машин, резервуаров, работающих под давлением. Различают трубы малого наружного диаметра (до 114 мм), среднего (114-480 мм) и большого (480-2500 мм и больше).

С целью улучшения структуры и свойств материала трубы подвергают термической обработке для предохранения от коррозии и действия абразивов, покрывают неметаллическими материалами (пластмассами, цементом, битумом, краской и др.), изнутри и снаружи футеруют базальтовыми, резиновыми, стеклянными и т.п. вкладышами.

Железобетонные изделия обладают множеством достоинств,

К основным преимуществам ж\б конструкций следует отнести такие:

  • слабая подверженность коррозийным процессам;

  • железобетонные изделия хорошо противостоят зарастанию, в результате отложения осадков, так как они достаточно инертны и прочны, а шероховатая поверхность внутренних стенок не оказывает влияния на объем и скорость передаваемых жидкостей;

  • прочность на сжатие;

  • непроницаемость для жидкостей;

  • прочность на растяжение;

  • стойкость к пониженным температурам;

  • высокая прочность;

  • возможность производства серийным способом с разнообразными рабочими характеристиками;

  • небольшие затраты металла;

  • относительно невысокая себестоимость.

недостатков:

  • большой вес;

  • хотя изделия довольно устойчивы к коррозии, это не исключает ее появления, что приводит к выщелачиванию бетона, появлению наростов и истончению стенок и влечет за собой необходимость замены трубопроводных элементов или их санацию.

Существует четыре группы напорных труб, разделенных по характеристикам максимально разрешенного внутреннего давления:

  • первая группа, где максимально значение равно двадцати атмосферам;

  • вторая группа — до пятнадцати атмосфер;

  • третья группа — до десяти атмосфер;

  • четвертая группа — до пяти атмосфер.

При передаче жидкостей под давлением требуется соблюдать герметичность трубопровода. Для этой цели применяются соединения его элементов с использованием уплотнительных колец из резины. Затем стык покрывается раствором цемента.

По способу изготовления трубы для магистральных нефтепроводов подразделяются на бесшовные, сварные с продольным швом и сварные со спиральным швом. Бесшовные трубы применяют для трубопроводов диаметром до 529 мм, а сварные - при диаметрах 219 мм и выше.

Наружный диаметр и толщина стенки труб стандартизированы.

Диаметр, мм

наружный

условный

219

200

273

250

325

300

377

350

426

400

529

500

630

600

720

700

820

800

920

900

1020

1000

1220

1200

В связи с большим разнообразием климатических условий при строительстве и эксплуатации трубопроводов трубы подразделяют на две группы: в обычном и в северном исполнении. Трубы в обычном исполнении применяют для трубопроводов, прокладываемых в средней полосе и в южных районах страны (температура эксплуатации О и выше, температура строительства -40С и выше). Трубы в северном исполнении применяются при строительстве трубопроводов в северных районах страны (температура эксплуатации -20...-40 "С. температура строительства -60 °С). В соответствии с принятым исполнением труб выбирается марка стали.

Трубы для магистральных нефтепроводов изготавливают из углеродистых и низколегированных сталей.

Производство асбестоцементной трубы происходит следующим образом:

при помощи дробильных барабанов асбест измельчается до мельчайших разделенных волокон;

  • формируется сухая смесь в определенных пропорциях: в ней присутствует 85% портландцемента и лишь 15% асбеста. Смесь разбавляется водой до нужной консистенции;

  • в центрифугу заливается полученный состав. При вращении аппарата смесь оседает на стенках, вследствие чего получается бесшовная конструкция идеальной геометрии;

  • заготовка трубы помещается в паровую камеру, где под действием высоких температур асбестоцемент набирает максимальную прочность.

Сверхпластичность — состояние материала, имеющего кристаллическую структуру, которое допускает деформации, на порядок превышающие максимально возможные для этого материала в обычном состоянии. Состояние сверхпластичности характерно для металлов и керамик с мелким размером зерна, обычно меньше 20 мкм. Кроме достаточно мелкого зерна, от материала для достижения состояния сверхпластичности требуется высокая однородность распределения по объему термопластичных компонентов, которые связывают между собой границы зерен в процессе пластического течения, позволяя материалу сохранять свою кристаллическую структуру.

Сверхпластичность обычно наступает при температурах, превышающих половину температуры плавления по абсолютной шкале. Образцы в состоянии сверхпластичности при растяжении, как правило, не образуют «шейки» и не подвержены инерциальной кавитации, что имеет место при разрушении образцов в состоянии обычной пластичности.

Процессы прокатки классифицируют по следующим признакам:

по температуре проведения процесса прокатку делят на горячую (температура металла при реализации процесса выше температуры рекристаллизации) и холодную (температура металла ниже температуры рекристаллизации). Также имеет место так называемая теплая прокатка - обработка в области промежуточных температур;

по взаимному расположению осей валков и полосы различают продольную (ось прокатываемой полосы перпендикулярная осям валков), поперечную (ось прокатываемой полосы параллельна осям валков) и поперечно-винтовую или "косую" прокатку (оси валков находятся под некоторым углом друг к другу и к оси прокатываемой полосы;

прокатка бывает симметричной и несимметричной. Симметричной прокаткой называют процесс при котором воздействие каждого из валков на прокатываемую полосу является идентичным. Если это условие нарушается процесс следует отнести к несимметричному;

по наличию или отсутствию внешних сил приложенных к концам полосы выделяют свободную и несвободную прокатку. Прокатка называется свободной если на полосу действуют только силы, приложенные со стороны валков. Несвободная прокатка осуществляется с натяжением или подпором концов полосы.

Продольная прокатка. Способ продольной прокатки является наиболее распространенным. При продольной прокатке полоса подводится к валкам, вращающимся в разные стороны, и втягивается в зазор между ними за счет сил трения на контактной поверхности.

Поперечная прокатка. При поперечной прокатке обрабатываемое тело (цилиндрической формы) помещается в зазор между двумя валками вращающимися в одну сторону и получает вращательное движение за счет сил трения на контактной поверхности.

Поперечно-винтовая прокатка. Обрабатываемое тело (цилиндрической формы) проходя между валками, вращается и одновременно совершает поступательное движение, то есть каждая точка тела (за исключением расположенных на его оси) движется по винтовой траектории.

Листовой прокат это металлопрокат, сформированный в плоский тонкий лист и имеющий толщину от 0,4 до 100 и более миллиметров, в зависимости от назначения.

К разряду сортового проката относится  разнообразная продукция черной металлургии, получаемая в процессе прокатки углеродистой стали обыкновенного  качества на многоклетевых станах; в более редких случаях применяют низкоуглеродистые стали.     

Волочение. Тянущая сила, приложенная к заготовке, необходима не только для деформирования металла, но и для преодоления сил трения металла об инстру­мент, эти силы трения стараются уменьшить применением смазки и полировани­ем отверстия в волоке.

Прессование. При прессовании металл выдавливает­ся из замкнутой полости через отверстие, соответствующее сечению прессуемого профиля.

Лату́нь — двойной или многокомпонентный сплав на основе меди, где основным легирующим компонентом является цинк, иногда с добавлением олова (меньшим, чем цинка, иначе получится традиционная оловянная бронза), никеля, свинца, марганца, железа и других элементов. По металлургической классификации к бронзам не относится.

• Коррозионно стойкие,

• обычно с хорошими антифрикционными свойствами

• хорошие механические, технологические свойства

• хорошая жидкотекучесть

Латуни. Для фасонного литья применяют сложнолегирован-ные медноцинковые сплавы; простые латуни используют сравнительно редко.

Эти латуни имеют недостаточную пластичность при высоких температурах, поэтому склонны к образованию трещин при затрудненной усадке. Латунь склонна к поглощению водорода и образованию газовой пористости.

Алюминиевая латунь обладает коррозионной стойкостью в морской воде, поэтому она широко применяется в судостроении, а также в машиностроении при изготовлении тяжелонагруженных деталей.

Марганцевую латунь применяют для изготовления жаростойких и коррозионностойких отливок. Легирование этой латуни оловом улучшает коррозионную стойкость в морской воде.

Свинцовая латунь используется как антифрикционный материал; свинец улучшает обрабатываемость латуни резанием.

Изготовление отливок в песчаных формах. Литье в песчаные формы является самым распространенным способом изготовления отливок. Изготавливают отливки из чугуна, стали, цветных металлов от нескольких грамм до сотен тонн, с толщиной стенки от 3…5 до 1000 мм и длиной до 10000 мм. Сущность литья в песчаные формы заключается в получении отливок из расплавленного металла, затвердевшего в формах, которые изготовлены из формовочных смесей путем уплотнения с использованием модельного комплекта.

Медные сплавы имеют сравнительно высокие механические и антифрикционные свойства, хорошо противостоят коррозионному воздействию агрессивных сред (морской воды, пара и др.), сохраняют высокую пластичность при низких температурах. Они немагнитны, легко полируются и обрабатываются резанием. Из примесей, присутствующих в бронзах, наиболее вредное влияние на свойства оказывают алюминий и кремний. Сотые доли содержания этих элементов снижают механические свойства бронз и способствуют усилению поглощения водорода при плавке.

Оловянные бронзы широко применяют для изготовления арматуры, подшипников, шестерен, втулок, работающих в условиях истирания, повышенного давления воды и водяного пара.

Из сплавов этой группы наиболее широко применяют алюминиевые бронзы. Они имеют хорошую коррозионную стойкость в пресной и морской воде, хорошо противостоят разрушению в условиях кавитации, обладают меньшим, чем оловянные бронзы, антифрикционным износом.

Железо и марганец устраняют самопроизвольный отжиг отливок (склонность к образованию крупнозернистой структуры), повышают механические свойства; никель улучшает износостойкость и коррозионные свойства бронз.

Свинцовые бронзы Бр. СЗО, Бр. СН60-2,5 обладают высокой износостойкостью при трении в условиях больших удельных нагрузок и скоростей вращения. Поэтому свинцовые бронзы используют как заменитель оловянной при изготовлении вкладышей подшипников.

    Механические свойства металлических материалов при низких температурах определяются типом их кристаллической решетки. У металлов с кристаллической решеткой типа гранецентрированного куба (медь, алюминий, никель, свинец, железо-у, аустенитные стали) при понижении температуры наблюдается увеличение пределов текучести и прочности, повышение твердости и уменьшение ударной вязкости.

Старение стали — изменение свойств материала (стали), протекающее во времени без заметного изменения микроструктуры. Такие процессы происходят главным образом в низкоуглеродистых сталях (менее 0,25 % С). При старении за счёт скопления атомов углерода на дислокациях или выделения избыточных фаз из феррита (карбидов, нитридов) повышаются прочность, порог хладноломкости и снижается сопротивление хрупкому разрушению. Склонность стали к старению снижается при легировании её алюминием, титаном или ванадием.

Механическое или деформационное старение — это процесс, протекающий после пластической деформации, если она происходит ниже температуры рекристаллизации. Такое старение развивается в течение 15—16 суток при комнатной температуре и в течение нескольких минут при 200—350 °C. Развитие деформационного старения резко ухудшает штампуемость листовой стали, поэтому многие углеродистые стали подвергают обязательно испытаниям на склонность их к деформационному стар

Метод состоит в определении работы удара или ударной вязкости стали, подвергнутой холодной пластической деформации и искусственному старению, или в сравнении этих величин с работой удара или ударной вязкостью стали в исходном состоянии с определением показателя склонности к старению.

Для повышения хладостойкости и свариваемости строительных сталей применяют малоперлитные стали с низким содержанием углерода, микролегированные сильными карбидообразующими элементами. Кроме того, используют стали, легированные азотом в сочетании с различными сильными нитридообразующими элементами, в качестве которых чаще всего применяют ванадий, алюминий, ниобий и титан. Выделение азота из твердого раствора в виде нитридов уменьшает его охрупчивающее действие. Это увеличивает прочность стали и, способствуя измельчению зерна, не ухудшает ее хладостойкости.

К сталям этой группы относятся стали марок 09Г209Г2С09Г2СД16Г2АФ14Г2АФ, 14Г2САФ и др. Из-за дефицитности никеля его применение в сталях этого типа ограничено. Из всех легирующих элементов никель в наибольшей степени понижает хладноломкость стали. Никель и железо полностью растворимы друг в друге, имеют близкое строение кристаллических решеток. Никель не является карбидообразующим элементом, он находится в твердом растворе в феррите или аустените. Никель упрочняет феррит и одновременно увеличивает его вязкость. Никель увеличивает прокаливаемость стали, измельчает зерно, а также снижает концентрацию примесей на дислокациях и уменьшает блокирование дислокаций примесными атомами внедрения. Введение 1 % Ni снижает порог хладноломкости примерно на 20 К.

Резко отрицательное действие на хладостойкость оказывают вредные примеси: фосфор и сера. Растворяясь в феррите, фосфор заметно искажает кристаллическую решетку твердого раствора и повышает температуру перехода в твердое состояние. Охрупчивающее влияние фосфора усиливается при обогащении им межзеренных границ благодаря развитию ликвационных процессов.

При хрупком разрушении затрата энергии на образование новых поверхностей в результате раскрытия трещины меньше, чем освобождающаяся при этом накопленная упругая энергия. При вязком разрушении затрачивается значительно большая работа. Для развития вязкого разрушения необходим непрерывный внешний подвод энергии, расходуемой на пластическое деформирование металла впереди растущей трещины и преодоление возникающего при этом упрочнении.

При хрупком разрушении магистральная трещина имеет малый угол раскрытия (острая трещина), пластическая деформация вблизи поверхности разрушения почти полностью отсутствует. При вязком разрушении трещина имеет большой угол раскрытия (тупая трещина), поверхность разрушения характеризуется значительной степенью пластической деформации.

Микроизлом при хрупком разрушении имеет блестящую гладкую поверхность. Плоские грани расколотых кристаллических зерен придают металлический блеск хрупкому излому. Для хрупкого разрушения характерна высокая скорость распространения трещины, достигающая приблизительно 0,4 скорости распространения звука в металле. Скорость распространения вязкой трещины значительно ниже и определяется скоростью нарастания напряжений.

В случае вязкого разрушения необходимо повышать прочность материала. При хрупком разрушении надо, наоборот, увеличивать вязкость и пластичность, при необходимости даже снижая прочность. Наиболее опасно хрупкое разрушение.

Прокладочные материалы применяют для уплотнения как мест соединения крышки и корпуса арматуры, так и мест соединения арматуры с трубопроводом, то есть присоединительных патрубков. Выбор уплотнительных материалов весьма широк, сюда входят как металлические, так и неметаллические. Резина представляет из себя продукт термической обработки (вулканизации) смеси каучука и серы. Это очень упругий материал, обладает малой прочностью. Резиновые уплотнительные прокладки могут вырезаться или штамповаться из листовой резины, или формоваться в процессе вулканизации. Обычная резина выдерживает температуры до 50 0С , а специальная теплостойкая до 140 0С. Резина горюча и не должна применяться при повышенных температурах. Резиновые прокладки в зависимости от сорта резины обладают средней или высокой степенью релаксации, то есть способностью восстанавливать свою формупосле снятия нагрузки. Это позволяет в некоторых случаях использовать прокладку повторно после разборки соединения. Асбест - это неорганический природный материал белого цвета, который применяется при повышенных и высоких температурах. Выпускается в виде листового материала, картона или шнуров. Сам по себе асбест непрочный, рыхлый материал, обладает плохими антифрикционными свойствами. Для улучшения фрикционных свойств прокладочный материал из асбеста часто графитируют, то есть посыпают или натирают порошковым графитом, который является хорошим смазочным материалом. Листовой паранит представляет из себя продукт вулканизации смеси асбестовых волокон (60-70%), растворителя, каучука (12-15%), минеральных наполнителей (15-18%) и серы (1.2-8.0%) и последующего вальцевания под большим давлением. Паранит является универсальным прокладочным материалом. При давлении выше 320 МПа он начинает течь, то есть достигается предел текучести, в результате чего все неплотности в соединении заполняются материалом и обеспечивается герметичность соединения. Толщина прокладки должна быть минимальной, однако достаточной для заполнения канавок и неровностей. При увеличении толщины прокладки повышается вероятность ее выдавливания, поэтому не рекомендуется ставить толстые прокладки. Паранит выпускается в виде листов толщиной до 6 мм, он легко режется, рубится, из него можно вырезать фигурные прокладки. Это самый распространенный прокладочный материал для средних диаметров арматуры. Металлические прокладки применяются как штатный прокладочный материал. Как правило, используются прокладки из цветных металлов. Недостатком является невозможность самостоятельного изготовления такой прокладки, а так же большая релаксация напряжений. Лента ФУМ так же применяется для герметизации резьбовых соединений. Сокращение ФУМ означает фторпластовый уплотнительный материал. Фторпласт обладает низким пределом текучести, то есть легко уплотняется. Он технологичен в применении, выпускается на катушках в виде лент различной толщины.

Подшипники изготовляют из сплавов железа и 1-7% графита (ЖГр1, ЖГр3, ЖГр7) и бронзографита, содержащего 8-10% Sn и 2-4% графита (БрОГр10-2, БрОГр8-4 и др.).

Для работы в условиях трения без смазочного материала (деталей тормозов самолетов, тормозных накладок тракторов, автомобилей и т.д.) применяют материалы на железной основе. Наибольшее применение получил материал ФМК-11 (15%Cu, 9% графита, 3% асбеста, 3%SiO2 и 6% барита).

Фрикционные сплавы на медной основе применяют для условий жидкостного трения в паре с закаленными стальными деталями (сегменты, диски сцепления и т.д.). Типичным фрикционным материалом на основе меди является сплав МК5, содержащий 4% Fe, 8%Pb, 9%Sn, 0-2%Ni, 7% графита).

Технология изготовления отливки в песчаной форме

При наличии готовой к заливке формы и жидкого литейного сплава в ковше, технология изготовления отливки выглядит так.

Заливка ⇒ Кристаллизация ⇒ Выбивка ⇒ Обрубка ⇒ Очистка

Заливка – заполнение формы жидким литейным сплавом. Заливка – операция внешне простая, но очень ответственная. В процессе заливки надо всё время поддерживать литниковую чашу полной. Это уменьшает размывание стенок чаши струёй металла, льющейся из ковша. Заливать форму надо от начала до конца не прерывая заливки. После заливки формы литейный сплав в ней остывает и кристаллизуется. Образуется отливка. Далее отливка остывает в форме до температуры, близкой к температуре окружающей среды. Процесс этот идёт самопроизвольно.

Выбивка – операция извлечения отливки из формы. Выбивку мелких отливок из форм производят на вибрационных решётах. Форму ставят на решето. Решето трясут пневмоприводом в горизонтальной плоскости. От тряски, силами инерции, форма разрушается. Формовочная смесь просыпается вниз сквозь решетчатое дно, на решете остаются опоки и отливка. Использованную формовочную смесь – “горелую землю” используют многократно. Её разминают, просеивают, освежают (добавляют свежие песок, глину, вспомогательные материалы) и употребляют для изготовления новых форм.

Наклеп (нагартовка) – упрочнение металла в результате холодной пластической деформации.

Наклеп снижает пластичность и ударную вязкость, но увеличивает предел пропорциональность, предел текучести и твердость. Наклеп снижает сопротивление материала деформации противоположного знака. При поверхностном наклепе изменяется остаточное напряженное состояние в материале и повышается его усталостная прочность.

Технология изоляционных работ в трассовых условиях включает:

· подготовку изоляционных материалов;

· сушку или подогрев изолируемой поверхности;

· очистку;

· нанесение грунтовки и (или) покрытия;

· контроль качества покрытия.

Изоляционные покрытия должны наноситься, как правило, механизированным способом, обеспечивающим проектную толщину изоляционного слоя и его сплошность. Очистку и нанесение грунтовки на трубопроводы следует производить в зависимости от диаметра трубы соответствующими самоходными очистными машинами типа ОМ.

Композиционный материал – неоднородный сплошной материал, состоящий из двух или более компонентов, среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу, обеспечивающую совместную работу армирующих элементов. Механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними.

Преимущества композиционных материалов: -высокая удельная прочность; -высокая жёсткость (модуль упругости 130…140 ГПа); -высокая износостойкость; -высокая усталостная прочность.

Наиболее частые недостатки композиционных материалов: -высокая стоимость; -анизотропия свойств; -повышенная наукоёмкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны.

Технологические свойства характеризуют способность металлов подвергаться обработке в холодном и горячем состояниях. Технологические свойства определяют при технологических пробах, которые дают качественную оценку пригодности металлов к тем или иным способам обработки. 

Образец, подвергнутый технологической пробе, осматривают. Признаком того, что образец выдержал испытание, является отсутствие трещин, надрывов, расслоения или излома. К основным технологическими свойствам относят: обрабатываемость резанием, свариваемость, ковкость, литейные свойства. [9]

Обрабатываемость резанием - одна из важнейших технологических свойств, потому что подавляющее большинство заготовок, а так же деталей сварных узлов и конструкций подвергается механической обработке.

Свариваемость – способность металлов образовывать сварное соединение, свойства которого близки к свойствам основного металла. Ее определяют пробой сваренного образца на загиб или растяжение.

Ковкость – способность металла обрабатываться давлением в холодном или горячем состоянии без признаков разрушения. Ее определяют кузнечной пробой на осадку до заданной степени деформации.

Литейные свойства металлов характеризуют способность их образовывать отливки, без трещин, раковин и других дефектов.

Жидкотекучесть - способность расплава изгиб на определенный угол.

Усадка при кристаллизации - это уменьшение объема металла при переходе из жидкого состояния в твердое; является, причиной образования усадочных раковин и усадочной пористости в слитках и отливках.

Ликвация - неоднородность химического состава сплавов, возникающая при их кристаллизации, обусловлена тем, что сплавы в отличие от чистых металлов кристаллизуются не при одной температуре, а в интервале температур. Чем шире температурный интервал кристаллизации сплава, тем сильнее развивается ликвация, причем наибольшую склонность к ней проявляют те компоненты сплава, которые наиболее сильно влияют на ширину температурного интервала кристаллизации (для стали, например, сера, кислород, фосфор, углерод).

Полимерные изоляционные покрытия  предназначенные для защиты подземных трубопроводов от коррозии, выполняются из слоя грунтовки и одного - трех слоев липкой полимерной ленты. 

Титан - элемент IV группы побочной подгруппы периодической системы, порядковый номер 22, атомный вес 47,9. Химический знак - Ti. Металл сочетает большую прочность с малой плотностью r = 4,5 г/см3 и высокой коррозионной стойкостью. Однако из-за низкой теплопроводности затрудняется его применение для конструкций и деталей, работающих в условиях больших температурных перепадов, и при службе на термическую усталость. Металл обладает ползучестью как при повышенных, так и при комнатной температурах. К недостаткам титана как конструкционного материала следует отнести также относительно низкий модуль нормальной упругости.

Кислород хорошо растворяется в титане и сильно снижает данную характеристику уже в области малых концентраций. Пластические свойства металла уменьшаются и при добавлении азота. При содержании азота более 0,2 % наступает хрупкое разрушение титана. Вместе с тем кислород и азот повышают временное сопротивление и выносливость металла. В этом отношении они являются полезными примесями.

Вредной примесью является водород. Он резко снижает ударную вязкость титана даже при очень малых концентрациях, за счет образования гидридов.

При нагревании титана на воздухе на его поверхности, кроме обычной окалины, образуется слой, состоящий из твердого раствора на основе a-Ti (альфитированный), стабилизированного кислородом, толщина которого зависит от температуры и продолжительности нагрева. Он имеет более высокую температуру превращения, чем основной слой металла, и его образование на поверхности деталей или полуфабрикатов может вызвать хрупкое разрушение.

Сплавы титана обладают тремя основными преимуществами по сравнению с другими сплавами: малым удельным весом, высокими химическими свойствами и отличной коррозионной стойкостью. Сочетание легкости с большой прочностью делают их особенно перспективными материалами как заменители специальных сталей для авиационной промышленности, а значительная коррозионная стойкость - для судостроения и химической промышленности.

1) с a-фазой (алюминий);

2) с b-фазой (хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт, ванадий, молибден, ниобий и тантал);

3) с a + b-фазами (олово, цирконий германий).

Сплавы титана с алюминием имеют меньшую плотность и большую удельную прочность, чем чистый или технически чистый титан. По удельной прочности они превосходят многие нержавеющие и теплостойкие стали в интервале 400 - 500 °С. Эти сплавы обладают более высокой жаропрочностью и наивысшим сопротивлением ползучести, чем многие другие на основе титана. Они обладают хорошей свариваемостью, причем даже при значительном содержании алюминия материал шва и околошовной зоны не приобретает хрупкости. Добавка олова в сплавы повышает их прочностные характеристики. При концентрации в них до 5 % Sn заметного снижения пластических свойств не наблюдается. Кроме того, введение олова в сплавы повышает их сопротивляемость окислению и ползучести. Сплавы, содержащие 4 - 5 % Аl и 2 – 3 % Sn, сохраняют значительную механическую прочность до 500 °С.

Цирконий не оказывает большого влияния на механические свойства сплавов, но его присутствие способствует увеличению сопротивления ползучести и повышению длительной прочности. Цирконий является ценным компонентом титановых сплавов.

К титановым сплавам с термодинамически устойчивой b-фазой относятся системы, содержащие в своем составе алюминий (3,0 - 4,0 %), молибден (7,0 - 8,0 %) и хром (10,0 - 15,0 %). Однако при этом теряется одно из основных преимуществ титановых сплавов - относительно малая плотность.

Иногда, кроме алюминия и молибдена, в сплавы добавляется небольшое количество кремния. Это способствует тому, что сплавы в горячем состоянии хорошо поддаются прокатке, штамповке и ковке, а также увеличивается сопротивление ползучести.

Сплавы, содержащие, кроме алюминия и молибдена, хром, имеют высокую термическую стабильностью и меньшую склонностью к проявлению хрупкости при нагревании, мелкозернисты по своей структуре.

Широкое применение находит карбид титана TiC и сплавы на его основе. Карбид титана обладает большой твердостью и очень высокой темпера­турой плавления, что и определяет основные области его применения. Его давно применяют как компонент твердых сплавов для режущих инструментов и штампов. Типичными титансодержащими твердыми сплавами для режущего инструмента являются сплавы Т5К10, Т5К7, Т14К8, Т15К6, ТЗ0К4 (первая цифра соответствует содержанию карбида титана, а вторая - концентрации цементирующего металлического кобальта в %).

Алюминиевые сплавы по способу переработки их в изделия делят на деформируемые (подвергаются обработке давлением) и литейные.

К 1 группе относят сплавы алюминия с медью –дюралюмины (от фран. «Дюр»-«твердый). По прочности и твердости дюралюмины более чем в 2 раза превосходят чистый алюминий. Недостаток дюралюминов -низкая коррозионная стойкость,

Лидером среди материалов с памятью формы по применению и по изученности является никелид титана. Никелид титана обладает:

1.Превосходной коррозионной стойкостью.

2. Высокой прочностью.

3. Хорошими характеристиками формозапоминания. Высокий коэффициентвосстановления формы и высокая восстанавливающая сила. Деформация до 8 % может полностью восстанавливаться. Напряжение восстановления при этом может достигать 800 МПа.

4.Хорошая совместимость с живыми организмами.

5.Высокая демпфирующая способность материала.

Недостатки:

1.Из-за наличия титана сплав легко присоединяет азот и кислород. Чтобы предотвратить реакции с этими элементами при производстве надо использовать вакуумное оборудование.

2.Затруднена обработка при изготовлении деталей, особенно резанием. (Оборотная сторона высокой прочности).

3.Высокая цена. В конце XX века он стоил чуть дешевле серебра.

При современном уровне промышленного производства изделия из никелида титана (наряду со сплавами системы Cu-Zn-Al) нашли широкое практическое применение и рыночный сбыт

Эффект памяти формы — явление возврата к первоначальной форме при нагреве, которое наблюдается у некоторых материалов после предварительной деформации.

В ряду функциональных свойств памяти формы важное теоретическое и практическое значение принадлежит явлению так называемой деформации ориентированного превращения.

Битумы бывают природные и искусственные (нефтяные битумы); Природные битумы (асфальтиты) встречаются в виде местных скоплений или пропитывают горные породы (известняки, песчаники, глины). Это жидко-вязкие или твёрдые смеси высокомолекулярных углеводородов и их производных (сернистых, азотистых, кислородных и др.). Свойства битумов зависят от их химического состава и степени полимеризации содержащихся в них соединений. Различают восемь марок нефтебитумов. Кроме того, выпускаются высокоплавкие нефтебитумы – рубракс марок А и Б, применяемые для изготовления тугоплавких антикоррозионных мастик типа битуминоля. Марка битума устанавливается по трём показателям: глубине проникновения иглы (пенетрация), температуре размягчения и растяжимости.

Стали для штампов холодного деформирования.

Стали должны обладать высокой твердостью, износостойкостью, прочностью, вязкостью (чтобы воспринимать ударные нагрузки), сопротивлением пластическим деформациям.

Для штампов небольших размеров (до 25 мм) используют углеродистые инструментальные стали У10, У11, У12 после закалки и низкого отпуска на твердость 57…59 HRC. Это позволяет получить хорошую износостойкость и ударную вязкость. 

Стали для штампов горячего деформирования

Дополнительно к общим требованиям, от сталей этой группы требуется устойчивость против образования трещин при многократном нагреве и охлаждении, окалиностойкость, высокая теплопроводность для отвода теплоты от рабочих поверхностей штампа, высокая прокаливаемость для обеспечения высокой прочности по всему сечению инструмента.

Для изготовления молотовых штампов применяют хромоникелевые среднеуглеродистые

Неметаллическими включениями называют содержащиеся в стали соединения металлов (железа, марганца, кремния) с неметаллами (кислородом, серой, азотом, водородом, фосфором).

Источниками образования НВ в стали являются также огнеупоры и шлаки, с которыми металл соприкасается во время плавления и разливки.

Следовательно, в любой твердой стали неизбежно содержание различных НВ, которые ухудшают ее качество и свойства:

 нарушают сплошность металла;

 имеют по сравнению с металлом разный коэффициент расширения и неодинаковую деформируемость.

НВ подразделяют на группы по разным признакам. экзогенные- включения, состоящие из огнеупорных материалов и шлака, механически увлекаемые потоком жидкого металла во время выпуска и разливки и фиксируемые в затвердевшей стали.

 эндогенные- включения, образующиеся в результате протекания различных физико-химических процессов в самом металле во время его раскисления, кристаллизации и охлаждения в жидком и твердом состояниях.

Различают еще и экзоэндогенные включения, когда эндогенные включения выделяются на экзогенных.

По месту (времени) образования эндогенные включения подразделяются:

 на первичныеобразуются в момент раскисления;

 вторичныевыделяются во время охлаждения жидкого металла от температуры раскисления до температуры начала кристаллизации;

 третичныевозникают при кристаллизации стали (между температурами ликвидуса и солидуса);

 четвертичныевыделяются во время охлаждения затвердевшей стали.

По химическому составу:

 оксидные могут состоять из отдельных оксидов (FeO, MnO, SiO2, Al2O3, TiO2, ZrO2 и др.) или их соединений (силикатов, алюминатов и т.д.). Соотношение компонентов зависит от вида и количества раскислителей; количество зависит от остаточного содержания кислорода.

 сульфидные состоят из FeS, MnS, Al2S3, ZrS2и др. Наиболее эффективным способом уменьшения содержания сульфидных включений в готовой стали является снижение концентрации серы в металле.

 нитридные  могут иметь химический состав Si3N, AlN, VN, TiN, ZrN и др. Число нитридов резко возрастает в случае, если сталь, раскисленная нитридочувствительными элементами, контактирует с воздухом.

 карбидные содержатся в высокоуглеродистой стали, когда в ней присутствуют карбидообразующие элементы (Ti, Nb и др.).

 фосфидные выделяются в виде эвтектики, состоящей в основном из Fe2P, Mn5P2. Основным способом уменьшения содержания фосфидных включений в готовой стали является достижение низкой концентрации фосфора в металле (0,01%).

Встречаются комплексныевключения: сульфидные (FeSMnS), нитридные ((Ti,V)N), карбидные ((Ti,V)C, (NB,V)C), карбонитридные (V(C,N), (Ti,V)(C,N)).

В спокойной, особенно легированной, стали обычно преобладают оксидные включения, доля которых в общем количестве включений часто достигает 70-85%.

  1. По размерам. Нет единого мнения в определении групп включений по размерам, обычно проводят градацию:

 макроскопические   микроскопические  По форме и характеру расположения в объеме металла:

ЛАКОКРАСОЧНЫЕ ПОКРЫТИЯ - образуются в результате пленкообразования (высыхания, отверждения) лакокрасочных материалов, нанесенных на поверхность (подложку).

Основное назначение: защита материалов от разрушения (напр., металлов - от коррозии, дерева - от гниения) и

декоративная отделка

поверхности.

По эксплуатационным свойствам различают:

лакокрасочные покрытия атмосфере-, водо-, масло- и бензостойкие

Ø химически стойкие

Ø термостойкие

Ø электроизоляционные

Ø консервационные

специального назначения. К ним относятся, например, противообрастающие (препятствуют обрастанию подводных частей судов и гидротехнических сооружений морскими микроорганизмами), светоотражающие, светящиеся (способны к люминесценции в видимой области спектра при облучении светом или радиоактивным излучением), термоиндикаторные (изменяют цвет или яркость свечения при определенной температуре), огнезащитные, противошумные (звукоизолирующие).

нижний слой - грунт (получают нанесением грунтовки) обеспечивает адгезию комплексного покрытия к подложке, замедление электрохимической коррозии металла. Грунтовки должны надёжно сцепляться с металлом и обладать хорошими антикоррозионными свойствами. Они содержат плёнкообразующие вещества и пигменты.

промежуточный - шпатлевка (чаще применяют "второй грунт", или так называемую грунт-шпатлевку) - выравнивание поверхности (заполнение пор, мелких трещин и др. дефектов)

верхние, покровные, слои (эмали; иногда для повышения блеска последний слой - лак) придают декоративные и частично защитные свойства. Верхние кроющие слои защитного лакокрасочного покрытия должны быть малопроницаемы для влаги, паров, газов, ионов электролитов, не должны набухать и растрескиваться в рабочей среде. Наиболее распространённые плёнкообразующие для кроющих слоев — алкидные смолы и их композиции с меламино-формальдегидными смолами и мочевино-формальдегидными смолами. Хорошей химической стойкостью обладают покрытия на основе феноло-альдегидных смол, эпоксидных смол,поливинилхлорида.

Кипящая сталь является не полностью раскисленой. Кипящая сталь- довольно хрупкая, имеет плохие показатели свариваемости и наиболее подвержена коррозии.

Спокойная сталь

Полученная в результате раскисления сталь называется спокойной. Содержание кремния в спокойной стали не менее 0,12%, а наличие неметаллических включений и шлаков минимально.

Слитки спокойных сталей имеют плотную однородную структуру, а соответственно и улучшенные показатели по механическим свойствам.

Спокойная сталь отлично подходит для сваривания, а также обладает лучшей сопротивляемостью к ударным нагрузкам. Является более однородной.

Она подходит для возведении опорных металлоконструкции (благодаря ее стойкости к хрупкому разрушению), которые подвергаются сильным нагрузкам.

Спокойная сталь отлично подходит для сваривания, а также имеет лучшее сопротивление ударным нагрузкам и более однородна.

Полуспокойная сталь структура слитка спокойной стали Промежуточной по качественным показателям - является полуспокойная сталь.

Соседние файлы в предмете Теоретическая механика