Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

EP / Ильинский Н. Ф. - Основы электропривода

.pdf
Скачиваний:
1899
Добавлен:
02.02.2015
Размер:
923.71 Кб
Скачать

91

активно-индуктивной нагрузке останутся в силе рассмотренные ранее в однофазном варианте необходимые добавления - диоды, которые шунтируют ключи, и конденсатор, участвующий в процессе перекачки запасаемой в индуктивностях энергии на каждом такте работы схемы.

а) б) Рис. 4.21. Диаграммы фазных напряжений

Изложенный принцип преобразования постоянного напряжения в переменное, основанный на использовании управляемых ключей, в различных модификациях и вариантах используется в подавляющем большинстве современных преобразователей частоты. В частности, он используется в автономных инверторах тока, когда на входе инвертора включен реактор, индуктивность которого достаточна для поддержания тока нагрузки практически неизменным в течение полупериода выходной частоты. Таким образом, в АИТ задается мгновенное значение тока, он питается от источника тока. Напряжение - зависимая переменная. Обычно нагрузка шунтируется конденсатором в целях создания условий коммутации ключей - тиристоров - и обеспечения нормальной работы при активно-индуктивной нагрузке.

Из изложенного следует, что управляемые ключи позволяют преобразовывать постоянное напряжение в m - фазное переменное напряжение нужной частоты, однако остался открытым вопрос об управлении амплитудой переменного напряжения. Принципиально есть несколько возможностей. Первая - и очевидная - исполь-

92

зовать для связи с сетью управляемый выпрямитель взамен неуправляемого. Эта возможность используется обычно в АИТ и в последнее время в некоторых АИН для обеспечения рекуперации энергии в сеть и снижения вредного влияния инвертора на сеть. Вторая возможность - варьирование длительности импульса внутри каждого полупериода. Третья, повсеместно используемая в современных преобразователях частоты на основе АИН, - широтно-импульсная модуляция ШИМ.

Идею построения автономного инвертора напряжения с ШИМ проиллюстрируем на простейшей идеализированной однофазной схеме с чисто активной нагрузкой - рис. 4.16,а.

Для изменения амплитуды и формы напряжения на нагрузке раздробим каждый

период Т на n равных частей (интервалов) с продолжительностью каждого

τ =

T

и

n

 

 

 

будет коммутировать ключи 1,2 на каждом интервале положительного полупериода, а ключи 3,4 - на каждом интервале отрицательного полупериода как показано на рис. 4.22,а. Тогда на каждом интервале i к нагрузке будет прикладываться не полное напряжение U, а лишь его часть Uiср:

U iср =

U × ti1

=

U × ti1

= Uε i .

 

τ

 

ti1 + ti2

 

а) б)

Рис. 4.22. ШИМ на интервале (а) и на половине периода выходной частоты (б)

Меняя на каждом интервале относительную ширину импульса ε i = tτi1 ,

93

можно легко управлять средним за интервал напряжением Uiср, т.е. формировать на каждом полупериоде любую нужную форму напряжения, как показано на рис. 4.22,б. С увеличением n будет уменьшаться τ и ступенчатая кривая будет приближаться к заданной плавной.

Используя широтно-импульсную модуляцию, можно формировать любые нужные формы кривой тока, учитывая изменяющиеся в процессе работы параметры нагрузки. В современных хорошо сделанных преобразователях частоты ШИМ позволяет при любой требуемой выходной частоте преобразователя изменять нужным образом амплитуду напряжения, управляя магнитным потоком двигателя, и формировать при любой нагрузке на валу близкую к синусоидальной форму тока двигателя.

Полно реализовать широкие возможности ШИМ удалось лишь в последние 5 - 10 лет с появлением на рынке совершенных ключей, в частности, транзисторных модулей IGBT с напряжением до 1200 В, током до 600 А и частотой коммутации до 30 кГц, а также средств управления ими.

На рис. 4.23 в качестве примера показаны экспериментальные осциллограммы фазного напряжения и тока в одной из версий системы ПЧ-АД.

Рис. 4.23. Экспериментальная осциллограмма напряжения и тока в ПЧ с ШИМ

94

Наряду с рассмотренными выше преобразователями частоты с явно выраженным звеном постоянного тока иногда используются преобразователи частоты, в которых нет промежуточного звена постоянного тока, а питающая трехфазная сеть непосредственно связана с нагрузкой - статорными обмотками АД через группы управляемых выпрямителей - рис. 4.24,а,б. Такие ПЧ называют преобразователями частоты с непосредственной связью или циклоконверторами.

Каждая фаза двигателя (на рис. 4.24,б изображена фаза А) снабжена двумя комплектами встречно-параллельно включенных управляемых выпрямителей, выполненных на простейших полууправляемых ключах - тиристорах. Управляя выпрямителями, можно обеспечить условия, при которых на каждой фазе двигателя в положительный полупериод требуемого выходного напряжения (“+” на рис. 4.24,в) проводит один комплект тиристоров А1, а в отрицательный (“-”) другой - А2.

а)

б)

в)

Рис. 4.24. Схемы (а) и (б) и диаграмма напряжений (в) преобразователя частоты с непосредственной связью

95

Из рис. 4.24,в следует, что период выходного напряжения Т и, следовательно, частота f= 1/Т зависят от момента переключения комплектов тиристоров и могут изменяться в некоторых пределах. Верхняя частота ограничена, поскольку при приближении Т к Тс (периоду сетевого напряжения) выходное напряжение оказывается сильно искаженным; на практике часто принимают f fc/2 .

Амплитуда выходного напряжения может изменяться за счет изменения угла, как показано на рис. 4.24,в.

К преимуществам циклоконвертора следует отнести схемную простоту, реализуемость на простых, дешевых ключах, возможность двусторонней передачи мощности, малые потери в силовом канале. Однако, его недостатки - низкая верхняя частота, сильное искажение как питающего, так и выходного напряжения ограничивают пока его применение лишь отдельными специальными приводами.

Как следует из изложенного выше, преобразователи частоты являются одновременно и регуляторами напряжения, однако эта их функция имеет вспомогательный характер.

Вместе с тем, имеется специальная группа электрических преобразователей - регуляторы напряжения, единственной функцией которых является управление средней за полпериода величиной переменного напряжения.

Типичная схема трехфазного тиристорного регулятора (преобразователя) напряжения ТПН, включаемого между сетью переменного тока и нагрузкой (АД), представлена на рис. 4.25,а.

Три пары встречно-параллельно включенных тиристоров управляются блоком управления БУ, представляющим собой любое устройство типа СИФУ (схема им- пульсно-фазового управления). СИФУ подает на тиристоры открывающие импульсы в моменты, сдвинутые на изменяемый угол α относительно момента естественной коммутации, благодаря чему напряжение меняется от U = Uн (α = 0) теоретически до 0 (α = 180°) (рис. 4.25,б). Закрывание тиристоров происходит естественно - при изменении полярности напряжения.

96

а) б)

Рис. 4.25. Тиристорный регулятор напряжения

Регуляторы напряжения, отличающиеся предельной простотой, доступностью элементной базы (тиристоры), малыми габаритами, высокой надежностью и низкой стоимостью, давно используются в мировой практике в качестве регуляторов скорости маломощных, обычно однофазных двигателей (доли кВт) и в качестве устройств плавного пуска трехфазных двигателей значительной (десятки - сотни кВт) мощности. Они же могут использоваться и для управления напряжением в целях энергосбережения при ω ≈ const, но сильно меняющейся нагрузке.

Как подчеркивалось ранее, эти устройства не должны применяться для регулирования скорости сколько-нибудь мощных АД, приводящих во вращение насосы, вентиляторы и другие машины, работающие в продолжительном режиме.

97

Глава пятая

ПЕРЕХОДНЫЕ ПРОЦЕССЫ

5.1.Общие сведения

Впредыдущих разделах изучались свойства и характеристики электроприводов в установившихся режимах, то есть при выполнении условия

М- Мс = 0.

Внастоящей главе рассматриваются неустановившиеся или переходные про-

цессы, имеющие место при переходе привода из одного установившегося состояния в другое, совершающемся во времени. При этом

М - М с = J

dω

,

dω

¹ 0.

dt

dt

 

 

 

Можно назвать следующие причины возникновения переходных процессов: изменение Мс; изменение М, то есть переход привода с одной характеристики на другую, име-

ющий место при пуске, торможении, реверсе, регулировании скорости, изменении какого-либо параметра привода.

Необходимость в анализе переходных процессов возникает в связи с тем, что производительность ряда ответственных механизмов (например, реверсивного прокатного стана) определяется быстротой протекания переходных процессов; качество выполнения многих технологических операций определяется переходными процессами (движение лифта, врезание резца в деталь и т.п.); механические и электрические перегрузки оборудования в большинстве случаев определяются переходными процессами.

Объектом исследования, как и прежде, будет упрощенная, идеализированная модель привода - рис. 5.1.

98

Рис. 5.1. Модель электропривода для исследования динамики

Основная задача при изучении переходных процессов сводится к определению зависимостей ω(t), M(t) и i(t) для любых конкретных приводов в любых условиях.

При изучении переходных процессов мы будем полагать известными следующие исходные данные:

-начальное состояние: ωнач, Мнач, iнач;

-конечное состояние: ωкон, Мкон, iкон и соответствующая ему характеристика

ω(М);

-характер изменения во времени фактора, вызвавшего переходный процесс;

-параметры привода.

Все возникающие на практике задачи в целях их упорядоченного изучения разделим на четыре большие группы.

1.Преобладающей инерционностью в приводе является механическая инерционность (J); электрические инерционности (L) малы или не проявляются. Фактор, вызывающий переходный процесс, изменяется скачкообразно (мгновенно) то есть много быстрее, чем скорость.

Примеры задач, относящихся к этой группе: мгновенный наброс и сброс нагрузки, пуск, реверс, торможение, регулирование скорости асинхронных двигателей при питании от сети, если не учитывать индуктивности обмоток; то же для двигателей постоянного тока независимого возбуждения если Ф = const, а Lя = 0, то же для двигателей последовательного или смешанного возбуждения, если Lя= Lв =0.

2.Преобладающая инерционность - механическая (J); индуктивности электрических цепей малы или не проявляются. Фактор, вызывающий переходный процесс, изменяется не мгновенно, то есть темп его изменения соизмерим с темпом измене-

ния скорости ω (“медленное” изменение воздействующего фактора).

Примеры: переходные процессы в системах управляемый преобразователь -

99

двигатель постоянного тока, преобразователь частоты - асинхронный двигатель, если L = 0.

3. Механическая и электрическая инерционность соизмеримы; фактор, вызывающий переходный процесс, изменяется мгновенно.

Примеры: переходные процессы в приводе постоянного тока при Ф = var; то же при Ф = const, но Lя ¹ 0, то же в системе источник тока - двигатель.

4. Учитываются несколько инерционностей, фактор, вызывающий переходный процесс, изменяется не мгновенно. Эти наиболее сложные задачи, относящиеся к замкнутым системам регулирования, мы рассмотрим очень кратко - они будут детально изучаться в других курсах.

5.2.Переходные процессы при L = 0 и “быстрых” изменениях воздействующего фактора

Все переходные процессы, относящиеся к первой группе, подчиняются, очевид-

но, механическому уравнению движения

 

М - М с = J

dω

.

(5.1)

 

 

dt

 

Искомые зависимости ω(t) и M(t) должны быть получены путем решения этого уравнения при заданных начальных условиях. Конкретные особенности привода отразятся в виде зависимостей M(ω) и Mс(ω), входящих в уравнение (5.1).

а) M = const, Mс = const

Начнем рассмотрение задач первой группы с простейшего случая, когда в переходном процессе M = const, и Mс = const.

100

а) б)

Рис. 5.2. Механические характеристики (а) и временные зависимости (б) при М = const и Mc = const

Пусть привод (рис. 5.1) работал в точке ωнач, Мнач = Мс (рис. 5.2) некоторой характеристики (она нас не интересует) и в момент времени t = 0 был мгновенном переведен на новую характеристику, показанную на рис. 5.2,а жирной линией.

Уравнение (5.1) в этом случае - дифференциальное уравнение с разделяющими-

ся переменными и его решение имеет вид:

 

 

ω = ò

М

 

М

с dt =

M

M

c t + C.

 

1

J

 

 

1 J

 

Постоянную интегрирования С найдем из начального условия - при t = 0, ω =

ωнач:

ωнач = С.

Окончательно будем иметь:

ω = ω на +

М 1 M c t.

(5.2)

 

J

 

Это решение действует на интервале ωнач < ω < ωкон, так как по условию при ω = ωкон функция ω(М) терпит излом. На этом интервале М =М1.

Графики переходного процесса приведены на рис. 5.2,б. Время переходного процесса tпп можно найти, подставив в (5.2) ω = ωкон и решив относительно t:

tп п =

J( ω

кон

− ω на÷

)

.

(5.3)

М 1

М с

 

 

 

 

 

Этот же результат, конечно, можно получить, решив (5.1) относительно dt и

Соседние файлы в папке EP