Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Химия

.pdf
Скачиваний:
1066
Добавлен:
17.03.2015
Размер:
1.6 Mб
Скачать

растворимое основание, это щелочь. Гидроксиды галлия (III) и индия (III) - амфотерны, поэтому все соли этих металлов (III) подвержены гидролизу.

Поскольку значения стандартных электродных потенциалов Ga, In, Tl отрицательные, они растворяются в кислотах с выделением водорода.

Задачи

213. Напишите электронные формулы Al, Ga, In, Tl в нормальном и возбужденном состояниях, распределите валентные электроны по энергетическим ячейкам и определите возможные степени окисления этих металлов в их соединениях. Почему для Tl характерной степенью окисления является +1

214.Как получаются гидроксиды Al(OH)3 ,Ga(OH)3 , In(OH)3Какие они имеют свойства Как диссоциируют? Напишите уравнения взаимодействия этих гидроксидов с HCl и NaOH.

215.С какими из перечисленных ниже соединений взаимодействует Al, Tl :

H2O, HCl, H2SO4 (разб.), H2SO4 (конц.), HNO3 (разб.), HNO3 (конц.)? Напишите уравнения реакций.

216.Как взаимодействует Al с водным раствором щелочиКакие стадии этого процесса можно выделить Запишите соответствующие реакции.

217.Составьте уравнения реакций, которые нужно провести для осуществления следующих превращений:

 

 

Al AlCl3

Al(OH)3

Na[Al(OH)4]

 

 

218.

Что

такое алюмотермия

Можно

ли алюмотермическим способом

получить из оксида железа (III) железо и из оксида кальция кальций при

1500 К

Подтвердите

ответ

расчетом

энергии

Гиббса

соответствующих

реакций, если

 

 

 

 

 

 

 

 

 

 

 

Fe2O3(т) CaO (т) Al2O3 (т) Fe(т) Al(т) Ca(т)

H298 кДж/ моль

-823

 

-636

-1677

0

0

0

S 298 Дж/ (моль*град)

87,9

 

39,8

 

51

27,3 28,3

41,8

219. Осуществите превращения и определите неизвестные вещества:

 

t

электролиз

 

 

 

 

 

 

 

Al(OH)3

Х

Y

Al(NO3)3

Na[Al(OH)4]

 

 

220.Почему Al относится к металлам, а бор – к неметаллам, хотя эти элементы являются полными электронными аналогами?

221.Осуществите превращения:

B H3BO3 Na2B4O7 H3BO3

222. Составьте, где возможно, молекулярные и электронные уравнения реакций:

а) борного ангридида с водой ; б) бора с концентрированными азотной и серной кислотами ; в) борной кислоты с магнием ;

г) буры с сильной кислотой.

XX . Элементы IVа подгруппы

На внешнем уровне элементов этой подгруппы по 4 электрона. Общая формула валентных электронов nS2p2 . Характерные степени окисления +2 и +4. Соединения углерода и кремния со степенью окисления +2 немногочисленны и сравнительно малостойки.

При переходе от углерода к свинцу закономерно ослабевают неметаллические и нарастают металлические свойства элементов. Углерод и кремний являются неметаллами, олово и свинец - металлы.

Углерод в свободном состоянии наиболее известен в виде двух модификаций - алмаза и графита.

Углерод при взаимодействии с водородом образует метан:

С+2H2 CH4

Метан - простейший представитель водородных соединений углерода - углеводородов, представляющих собой самый многочисленный класс химических веществ и являющихся объектом изучения органической химии.

Углерод и кремний - типичные восстановители. При нагревании с избытком воздуха графит и кремний образуют диоксиды (СO2 и SiO2), при недостатке кислорода можно получить монооксиды (CO и SiO), которые образуются также при нагревании простых веществ с их диоксидами:

C + CO2 = 2CO,

Si + SiO2 = 2SiO

Уже при обычной температуре С

и Si реагирует с фтором, при нагревании

- с хлором, образуя соответственно тетрафториды и тетрахлориды; при более сильном нагревании - с серой (продукты - CS2 и SiS2) и даже между собой, образуя карборунд – вещество, по твердости близкое к алмазу:

Si + C = SiC

Углерод окисляется концентрированными H2SO4 и HNO3:

C + 4HNO3 = CO2 + 2H2O + 4NO2

Кремний растворяется в смеси концентрированных азотной и плавиковой кислот:

3Si + 4HNO3 + 12HF = 3SiF4 + 4NO + 8H2O

Кроме того, Si растворяется в водных растворах щелочей:

Si + 2NаOН + H2О=Na2SiO 3+ 2H2

Графит часто используют для восстановления малоактивных металлов из их оксидов:

CuO + C = Cu + CO

При нагревании же с оксидами активных металлов C u Si диспропорционируют, образуя карбиды:

CaO + 3C = CaC2 + CO

2Al2O3 + 9C = Al4C3 + 6CO

или силициды:

2MgO + 3Si = Mg2Si + 2SiO2.

Активные металлы - более сильные восстановители, чем С и Si, поэтому последние при непосредственном взаимодействии с ними выступают в качестве окислителей:

Ca + 2С = CaC2 , 2Mg + Si = Mg2Si

Оксиды углерода (II) и кремния (II) не реагируют при обычных условиях ни с кислотами, ни со щелочами. SiO малодоступен и используется редко, в отличие от СО - угарного газа.

СО принято считать несолеобразующим, однако он реагирует с расплавом щелочи при высоком давлении с образованием соли муравьиной кислоты HCOОH, поэтому формально его можно считать ее ангидридом, что подтверждается выделением СО при обезвоживании HCOOH:

 

H2SO4(конц.)

HCOOH

CO + H2O

На воздухе СО горит, образуя СО2 . Он восстанавливает металлы из их оксидов:

FeO + CO = Fe + CO2

Вприсутствии катализатора СО окисляется хлором, образуя ядовитый газ

-фосген:

CO + Cl2 = COCl2

Со многими металлами СО образует летучие карбонилы:

Fe + 5CO = Fe(CO)5, Ni + 4CO = Ni(CO)4 .

Диоксид углерода СО2 постоянно образуется в природе при окислении органических веществ. В лабораториях его обычно получают в аппарате Киппа:

CaCO3 + 2HCl = CaCl2 + H2O + CO2 ,

в промышленности - обжигом известняка: CaCO3 = СаО + СО2

Кислый по своей природе, СО2 реагирует с сильными основаниями, например,

Ca (OH)2 +CO2 = CaCO3 +H2O

Взаимодействием диоксида углерода с аммиаком под давлением получается важное в практическом отношении соединение - карбамид или мочевина:

CO2 +2NH3 = CO(NH2)2 + H2O

Раствор СО2 в воде обладает слабокислотной реакцией, обусловленной присутствием в растворе небольших количеств угольной кислоты:

СО2 2О = Н2СО3 Угольная кислота может существовать только в водном растворе. По

способности к диссоциации она относится к очень слабым; в растворе имеют место равновесия:

Н2СО3 Н++НСО-3 + +СО32-

Будучи двухосновной, угольная кислота образует два ряда солей - средние (карбонаты) и кислые (гидрокарбонаты), которые могут быть получены действием СО2 на щелочи (см. выше) или обменными реакциями:

Ba(NO3)2 + Na2CO3 = BaCO3 + 2NaNO3

NaHCO3 + NaOH = Na2CO3 + H2O

Со слабыми основаниями угольная кислота обычно дает основные соли, например, (CuOH)2CO3 - карбонат гидроксомеди (природный минерал - малахит).

При нагревании все карбонаты (кроме солей щелочных металлов) разлагаются:

t

MgCO3 = MgO+CO2 ,

а гидрокарбонаты щелочных металлов переходят в карбонаты: t

2NaHCO3 = Na2CO3+CO2 + H2O

Растворы карбонатов имеют вследствие гидролиза кислот сильнощелочную реакцию:

CO32- +HOH HCO3- +OH-

Карбонаты менее растворимы, чем гидрокарбонаты.

Из солей угольной кислоты в природе широко распространен CaCO3 (известняк, мел, мрамор), а также MgCO3 . Одним из главных продуктов

основной химической промышленности является сода (Na2CO3

10H2O-

кальцинированная сода, NaHCO3 - питьевая сода), в значительных объемах карбонаты являются ценными рудами и используются для получения металлов (FeCO3 - шпатовый железняк, ZnCO3 – галмей).

Из соединений углерода с серой и азотом большое практическое значение имеют сероуглерод CS2 и синильная кислота HCN.

Кислотному оксиду SiO2 соотвествуют малорастворимые в воде орто – и метакремниевые кислоты (H4SiO4 и H2SiO3). Соли кремниевых кислот – силикаты – в большинстве своем также нерастворимы в воде; растворимы лишь Na2SiO3 и K2SiO3. Растворы вследствие гидролиза имеют щелочную реакцию.

Силикаты натрия и кальция составляют основу обычного стекла, состав котрого выражается приблизительной формулой Na2O CaO 6SiO2.

Силикаты чрезвычайно распространены в природе.

Врамках IVа группы германий, олово и свинец выделяют в отдельную подгруппу, поскольку эти элементы, особенно олово и свинец, являются металлами. На воздухе эти металлы покрыты тонкой оксидной пленкой, предохраняющей их от дальнейшего разрушения.

Вода сама по себе не действует на эти металлы, но в присутствии воздуха свинец постепенно разрушается с образованием гидроксида.

Pb +O2 +2H2O = Pb(ОН)2

Вжесткой воде процесс тормозится образованием нерастворимых солей - сульфата и основного карбоната.

Разбавленные соляная и серная кислоты почти не действуют на эти металлы. В концентрированной серной, особенно при нагревании, свинец и олово растворяются с образованием соответственно Pb(HSO4)2 и Sn(SO4)2. В концентрированной соляной кислоте олово растворяется, вытесняя водород. С азотной кислотой интенсивность взаимодействия свинца растет с понижением концентрации кислоты; олово же интенсивнее реагирует с концентрированной

HNO3:

4Sn + 10HNO3(р.) = 4Sn(NO3)2 + NH4NO3 + 3H2O

Sn + 4HNO3(к.) = H2SnO3 + 4NO2

+ H2O

(оловянная кислота)

 

Оба этих металла растворяются в

щелочах, причем олово - в

концентрированных с образованием станнитов - солей оловянистой кислоты

(H2SnO2):

Sn + 2NaOH = Na2SnO2 + H2 ,

которые в растворах существуют в гидратированной форме (например, Na2[Sn(OH)4] - тетрагидроксостаннит натрия); свинец же лучше реагирует в разбавленных горячих растворах с образованием гидроксоплюмбитов:

Pb + 4KOH +2H2O = K4[Pb(OH)6] + H2

Олово образует два ряда соединений, соответствующих устойчивым степеням окисления +2 и +4, у свинца значительно более устойчивы и многочисленны соединения со степенью окисления +2.

Гидроксиды Sn(OH)2 и Pb(OH)2 получаются при действии щелочей на растворимые соли этих металлов

Me2+ + 2OH- = Me(OH)2 .

Они амфотерны и реагируют как с кислотами, так и сильными основаниями:

Sn(OH)2

+2NaOH

= Na2[Sn(OH)4]

Pb(OH)2

+ 4KOH

= K4 [Pb(OH)6]

Гидроксиды олова (IV) называются оловянными кислотами и извесны в двух модификациях: -оловянной и -оловянной кислот.

Состав этих кислот довольно неопределенный; формула H2SnO3 является лишь простейшей из возможных, а правильнее состав выражает формула

mSnO2* nH2O.

-Оловянная кислота лекго растворяется в щелочах, образуя гидроксостаннаты:

H2SnO3 + 2NaOH + H2O = Na2[Sn(OH)6],

выделяющиеся из растворов в виде кристаллогидратов, например,

Na2SnO3*3H2O

Кислоты также растворяют -оловянную кислоту:

Н2SnO3 +4HCl = SnCl4 + 3H2O

В избытке соляной кислоты образуется комплексная гексахлороловянная кислота:

SnCl4 +2НCl = Н2[SnCl6]

В отличие от -формы -оловянная кислота не растворяется ни в растворах кислот, ни в растворах щелочей, реагируя лишь с расплавами щелочей.

-Кислота при хранении в растворе, в котором ее получили, постепенно превращается в -кислоту.

Среди содинений свинца (IV) большое значение имеет PbO2. Это амфотерный оксид с преобладанием кислотных свойств. При сплавлении с основными оксидами образуются плюмбаты - соли несуществующей в свободном состоянии свинцовой кислоты (H2PbO3):

CaO + PbO2 = CaPbO3

Плюмбаты большинства металлов (кроме натрия и калия) нерастворимы в

воде.

Диоксид свинца, как и другие его соединения в высшей степени окисления (+4), - очень сильный окислитель. Он, например, окисляет соляную кислоту до свободного хлора:

PbO2 + 4HCl = PbCl2 + Cl2 + 2H2O

Диоксид свинца используют в свинцовом аккумуляторе в качестве катода

(заряжен положительно):

 

 

 

PbO2 +SO42- + 4H+ +2e = PbSO4 + 2H2O

восстановление

 

Анодом (заряжен отрицательно) служит металлический свинец:

 

Pb + SO42- -2e = PbSO4

окисление

 

 

В качестве электролита используется 35-40 % раствор H2SO4 .

 

Суммарное

уравнение

окислительно-восстановительной

реакции,

протекающей при работе (разрядке) свинцового аккумулятора:

Pb + PbO2 + 4H+ + 2SO42- = 2PbSO4 +2H2O

Для зарядки аккумулятора его подключают к внешнему источнику тока (плюсом к плюсу и минусом к минусу). При этом на электродах протекают процессы, противоположные тем, которые идут при его разрядке, и вновь получаются вещества, необходимые для его работы.

Из средних солей данных металлов наиболее известны хлориды и сульфиды олова (II и IV) и свинца (II), а также хлорид, иодид, сульфат, гидросульфат, ацетат свинца (II). Последние две соли, в отличие от большинства других солей свинца, хорошо растворимы в воде. Растворы солей Sn и Pb имеют кислую реакцию вследствие гидролиза.

Задачи

223. Запишите электронные формулы углерода, олова и свинца в нормальном и возбужденном состояниях. Какие степени окисления наиболее характерны для этих элементов

224. Приведите уравнения реакций, характеризующих окислительные и восстановительные свойства углерода

225.В чем различие химических свойств оксидов углерода (II) и (IV)Чем это вызвано Приведите соответствующие уравнения реакций.

226.Какие соединения называются карбидами и силицидамиНапишите уравнения реакций их получения. Как взаимодействует с водой карбид

алюминия; силицид магния с соляной кислотой 227. Осуществите превращения и определите неизвестные вещества:

 

Ca(OH)2 CO2 Ca(OH)2

 

C

CO2

Х

Y

Z

CO2

228.Смесь кремния и угля массой 5,0 г обработали избытком концентрированной щелочи при нагревании. В результате реакции выделилось 2,8 л газа (н.у.). Вычислите массовую долю углерода в смеси.

229.Из чего состоит обычное стекло Приведите реакции, лежащие в основе его получения.

230.Осуществите превращения и определите неизвестные вещества

Mg

O2 K2CO3

SiO2 Si

Х SiH4 Y Z

231.Как ведут себя углерод и кремний с кислотами, щелочамиПриведите соответствующие уравнения реакций.

232.Как можно получить карбонаты, гидрокарбонатыКак они ведут себя

при нагревании Запишите соотвествующие уравнения реакций.

233.Кремниевая кислота слабее угольной. Запишите уравнения гидролиза карбоната и силиката натрия и возможные значения pH среды при равных исходных концентрациях солей и одинаковой температуре растворов.

234.С какими из следующих соединений, находящихся в водных растворах

HCl, H2SO4 (разб.), HNO3 (разб.), H2SO4 (конц.), HNO3 (конц.),

взаимодействует олово? Напишите уравнения реакций.

235.Какие свойства имеют оксиды и гидроксиды олова и свинца Напишите уравнения реакций взаимодействия их со щелочами и кислотами.

236.Напишите уравнения реакций взаимодействия свинца с HNO3 (разб.),

HNO3 (конц.), H2SO4 (разб.), H2SO4 (конц.), CH3COOH, HCl.

237.Чем можно объяснить окислительные свойства оксида свинца (IV) Закончите уравнения окислительно-восстановительных реакций и расставьте коэффициенты:

PbO2 + Mn(NO3)2 + HNO3 = HMnO4 + ………

PbO2 + HCl = Cl2 + ………

238.Составьте уравнения реакций свинца и олова с едким натрием; свинца с водой при доступе кислорода.

239.Составьте уравнения реакций, протекающих при зарядке и разрядке свинцового аккумулятора.

240.Как получить соду, имея металлический натрий, соляную кислоту,

мрамор и воду Составьте уравнения реакций.

XXI. Элементы Vа подгруппы

Азот, фосфор, мышьяк, сурьма и висмут имеют на внешнем энергетическом уровне по 5 электронов; соответственно их высшая степень окисления +5, низшая -3.

В целом они характеризуются как неметаллы, уступающие по этому признаку элементам VIa и VIIa подгрупп. Неметаллические свойства закономерно убывают сверху вниз по подгруппе, и у висмута уже преобладают металлические свойства.

Широкий диапазон изменения степени окисления обусловливает большое

разнообразие соединений этих элементов; особенно азота. Так, известны оксиды азота N2+1O, N+2O, N2+3O3, N+4O2, N2+5O5 . Все они могут быть получены

из азотной кислоты и ее солей.

Минимальную степень окисления – 3 азот имеет в аммиаке и его производных.

N2O устойчив при комнатной температуре. Химически инертен и ни с водой, ни с кислотами, ни со щелочью не реагирует. В этом отношении с ним схож оксид NO (N2O и NO относятся к безраличным или несолеобразующим оксидам).

Для оксида азота (II) характерна окислительно-восстановительная двойственность. Например, он легко окисляется кислородом воздуха до диоксида:

2NO + O2 = 2NO2,

с другой стороны, энергично окисляет водород в смеси их равных объемов при нагревании:

2NO + 2H2 = N2 + 2H2O

Диоксид азота NO2 – бурый ядовитый газ с характерным запахом.

При t -11 С существует в виде димера N2O4, при t = 140 С – в виде NO2, частично распадающегося при более высокой температуре на NO и O2 ; в интервале температур -11 140 С имеет место равновесие

N2O4 2NO2 – Q

Оксиды азота II и IV являются промежуточными продуктами промышленного способа получения азотной кислоты HNO3:

kat

4NH3 + 5O2 = 4NO + 6H2O

(горение аммиака при обычных условиях приводит к образованию молекуляр-

ного азота и воды).

.

 

2NO + O2 = 2NO2

 

4NO2 + O2 + 2H2O = 4HNO3

Если растворять диоксид азота в щелочах, то образуется смесь солей

азотной и азотистой кислот (нитритов и нитратов), например:

2N+4O2 + 2NaOH = NaN+5O3 + NaN+3O2 + H2O

Ангидридом азотистой кислоты HN+3O2 является неустойчивый оксид азота +3: N2O3.

Ангидрид азотной кислоты – N2+5O5 – белый кристаллический, уже при комнатной температуре постепенно разлагающийся на NO2 и O2.

Оксид азота +5 – очень сильный окислитель, многие органические вещества при соприкосновении с ним воспламеняются.

Азотистая кислота HNO2 принадлежит к числу слабых и известна только в очень разбавленных растворах. Степень окисления +3 является промежуточной для азота, поэтому HNO2 проявляет окислительно восстановительную двойственность: под действием восстановителей она восстанавливается обычно до NO, а в реакциях с окислителями – окисляется до

HNO3.

Азотная кислота также не отличается прочностью: уже под влиянием света она постепенно разлагается:

4HNO3 = 4NO2 + O2 + 2H2O

Принадлежит к числу наиболее сильных.

HNO3 за счет азота в максимальной степени окисления обладает ярко выраженной окислительной способностью.

При этом чем более она разбавлена и чем активнее восстановитель, тем

глужбе она восстанавливается:

 

Cu + HNO3(к.)

Cu(NO3)2

+ N+4O2

+ H2O

Cu + HNO3(р.)

Cu(NO3)2

+ N+2O

+ H2O

Zn + HNO3(очень разб.)

Zn(NO3)2 + N-3H4 NO3 + H2O

S + HNO3(к.)

H2SO4 + N+4O2 + H2O

Водород при окислении азотной кислотой, как правило, не выделяется. Смесь, состоящая из 1 объема азотной и 3-4 объемов соляной кислот,

называется «царской водкой». Она растворяет некоторые металлы, не взаимодействующие с азотной кислотой (Au, Pt, Pd, Os, Ru):

Au + HNO3 + 4HCl = H [AuCl4] + NO + 2H2O

Соли азотной кислоты – нитраты – термически нестабильны, разлагаются с выделением кислорода. При этом нитраты щелочных и щелочноземельных металлов переходят в нитриты:

t

2NaNO3 = 2NaNO2 + O2

Нитраты металлов, расположенных в ряду напряжений между Mg и Cu включительно, дают оксид металла, азота и кислород:

t

2Pb(NO3)2 = 2PbO + 4NO2 + O2;

нитраты наименее активных металлов разлагаются до свободного металла:

t

2AgNO3 = 2Ag + 2NO2 + O2

Все нитраты хорошо растворяются в воде.

Наиболее важное значение имеют нитраты натрия, калия, аммония и кальция, которые на практике называются селитрами.

С водородом азот образует несколько соединений, из которых наибольшее значение имеет аммиак NH3 – газ с характерным резким запахом.

В лаборатории он легко получается по реакции:

2NH4Cl + Ca(OH)2 = CaCl2 + 2H2O +2NH3

Аммиак очень хорошо растворим в воде, раствор имеет щелочную реакцию

NH3 + H2O NH4+ + OH-

и обычно выражается формулой NH4OH.

За счет неподеленной пары азота аммиак обладает слабыми основными свойствами и обратимо реагирует с кислотами.

NH3 + HCl NH4Cl

Фосфор в виде простого вещества существует в трех формах (аллотропных модификациях) - белый, красный, черный. Белый фосфор химически очень активен, легко взаимодействует с кислородом, галогенами, многими металлами. С кислородом фосфор образует оксиды P2+5O5, P2+3O3 . Им соответствуют орто– и метафосфорная кислоты (H3P+5O4 и HP+5O3) и фосфористая кислота HР+3O2. Наиболее важной является ортофосфорная. По способности к диссоциации она относится к кислотам средней силы.

Будучи трехосновной, образует три ряда солей: средние - фосфаты и кислые – гидро – и дигидрофосфаты. Растворы средних солей вследствие гидролиза имеют сильнощелочную реакцию.

Соли фосфорной кислоты широко используются в качестве минеральных удобрений.

Из природных соединений фосфора самое важное – ортофосфат кальция Ca3(PO4)2, составляющий основу минералов – фосфорита и апатита, являющихся сырьем для получения фосфора и его соединений.

Для получения фосфора смесь фосфорита или апатита с песком и углем прокаливают без доступа кислорода:

Ca3(PO4)2 + 3SiO2 + 5C = 3CaSiO3 + 2P + 5CO

У сурьмы, и особенно у висмута, металлические свойства уже преобладают над неметаллическими.

Оксид сурьмы (III) – типичный амфотерный оксид с некоторым преобладанием основных свойств, растворяется в кислотах и щелочах.

Гидроксид сурьмы, или сурьмянистая кислота, получается при действии щелочей на соли сурьмы в виде белого осадка. Осадок растворяется как в избытке щелочи, так и в кислотах.

Соли сурьмы (III), как соли слабого основания, в водном растворе гидролизуются с образованием основных солей:

SbCl3 + 2H2O Sb(OH)2Cl + 2HCl,

неустойчивых и разлагающихся с отщеплением молекул воды:

Sb(OH)2Cl = SbOCl + H2O

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]